
Increasing efficiency of DaCS programming
model for heterogeneous systems

9th INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING
AND APPLIED MATHEMATICS

September 11-14, 2011
Toruń, Poland

Maciej Cytowski, Marek Niezgódka

Interdisciplinary Centre for Mathematical and
Computational Modeling

University of Warsaw

Email: m.cytowski@icm.edu.pl

1

• Introduction

• Increasing efficiency of DaCS Programming Model

• Use case scenarios

Topics

2

• IBM PowerXCell8i – the enhanced Cell processor

• Nautilus Hybrid System
– 75 IBM QS22, 2xPowerXCell8i, 8GB RAM

– 18 IBM LS21, Quad-Core AMD Opteron, 32GB RAM

• No PowerXCell8i successors planned

• Still many advantages: single and double precision performance, energy
efficiency

• Nautilus and Green500 List
– 1st Place - November 2008 and June 2009

– 16th Place – Little Green500, November 2010

PowerXCell8i Hybrid Environment

3

• IBM DaCS – Data Communication and Synchronization library and runtime

• Supports development of applications for heterogeneous systems based on
PowerXCell8i and x86 architectures

– Resource and process manager

– Data transfers

– Synchronization

– Error handling

• Multi-level Parallelism:

– MPI accross hybrid nodes

– DaCS on hybrid nodes

– Libspe2, CellSs, OpenMP, OpenCL on accelerator

• Developed for hybrid environments like Roadrunner (LANL) and Nautilus (ICM)

IBM DaCS Programming Model

4

• Run the application on x86 core and offload some of its parts
on PowerXCell8i.

Example: IBM DaCS Programming Model

5

ICM’s HPC Environment

Computational systems Post-processing and

visualization system

Notos

IBM Blue Gene/P

Halo2

Sun Constellation System

Nautilus

Hybrid x86 & Cell

Common
Disk Storage

6

• A common future of heterogeneous systems: bottleneck introduced by
the data transfers crossing the accelerator boundary

• The computational granularity and performance of compute kernels must
be carefully measured and compared with data transfers performance

• The benchmark program: PING-PONG between host and accelerator

• Systems in use: Roadrunner architecture (Rochester, USA), Nautilus (ICM)

• Note: host and accelerator CPUs have different Endianess (additional byte-
swap step is needed)

• DaCS library includes its own byte-swapping mechanism

• Communication flags: DACS_BYTE_SWAP_DOUBLE_WORD and
DACS_BYTE_SWAP_DISABLE

Performance Benchmarking of DaCS

7

• PING-PONG Performance Tests

Performance Benchmarking of DaCS

8

• Simple idea: For large data transfers byte swapping could be optimized via
vectorization or parallelization on SPUs.

• Development steps:
– 1,2,4,16 SPUs SIMD versions

– PPU SIMD and dual-threaded PPU SIMD versions

Optimized Byte-Swapping

9

• Resulting PXCBS library is a combination of PPU and SPU implementations
used for different transfer sizes

Results: Optimized Byte-Swapping

10

Use Case 1: Hybrid FFTW

• Astrophysical application used for performing an all-sky coherent search for
periodic signals of gravitational waves in a narrowband data of a detector

• Single PowerXCell8i speedup: 3.24x

• Hybrid DaCS speedup: 3.56x

• Hybrid DaCS and PXCBS speedup: 4.5x

Use Case 2: Gravitational Waves

12

• Integration of the DaCS in the production environment

• Dynamic hybrid node allocation

• Possible core per core ratios (1:8,1:16)

• Hybrid partitions defined within Torque queueing system scripts

Management of DaCS hybrid jobs

#!/bin/sh

#PBS -N test_hybrid

#PBS –l nodes=2:ppn=4:opteron+8:ppn=4:cell

#PBS -l walltime=1:00:00

module load openmpi-x86_64

module load dacs

mpiexec ./program_dacs_hybrid

13

Thank you for your attention

14

