
Luisa D’Amore, University of Naples Federico II

Valeria Mele, University of Naples Federico II
Livia Marcellino, University of Naples Parthenope

Diego Romano, ICAR-CNR

Deconvolution of 3D

Fluorescence Microscopy Images

using Graphics Processing Units

9TH INTERNATIONAL CONFERENCE ON

PARALLEL PROCESSING AND APPLIED MATHEMATICS

September 11-14, 2011, Torun, Poland

The present work

Images distorted by:

1.Noise
2.Scattering

3.Glare

4.Blur

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Outline

• Application problem definition

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Problem
definition

Outline

• Application problem definition

• The algorithm and GPUs

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Problem
definition

Algorithm
and GPUs

Outline

• Application problem definition

• The algorithm and GPUs

• Algorithm effectiveness

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Outline

• Application problem definition

• The algorithm and GPUs

• Algorithm effectiveness

• Performance analysis parameters

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Outline

• Application problem definition

• The algorithm and GPUs

• Algorithm effectiveness

• Performance analysis parameters

• Conclusions and work in progress

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Outline

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• A fluorescence microscope is a light microscope used to study properties
of organic or inorganic substances, lighting them by UV rays

• In biomedical research, fluorescence microscopy is widely used to analyze
3-D structures of living biological cells and tissues.

• It uses the phenomenon of fluorescence and phosphorescence instead of
- or in addition to - reflection and absorption.

Fluorescence Microscopy

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Fluorescence microscope imaging

properties and measurement

imperfections distort the original 3D

image and reduce the maximal resolution

obtainable by the imaging system, thereby

restricting the quantitative analysis of the

3D specimen.

Image Restoration by Deconvolution

Images distorted by:

1.Noise
2.Scattering

3.Glare

4.Blur

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Image Restoration by Deconvolution

Images distorted by:

1.Noise
2.Scattering

3.Glare

4.Blur

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Outline

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Mathematically, the deconvolution is an inverse problem written as:

The Lucy-Richardson algorithm

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Mathematically, the deconvolution is an inverse problem written as:

•that we solve using the Expectation Maximization-Richardson Lucy

algorithm (in matrix form)

The Lucy-Richardson algorithm

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

To be accellerated

following [2]

[2] [D. S. C. Biggs and M. Andrews - Acceleration of iterative image restoration algorithms. Applied Optics. Vol 36(8), pp. 17661775, 1997]

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

The Lucy-Richardson algorithm

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

EM-RL (spatial domain)

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

The Lucy-Richardson algorithm

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Convolution Theorem

EM-RL (spatial domain)

EM-RL (frequency domain)

Where:

�capital letters denote the transformed functions

�F- and F- -1 are the Furier transform and the Inverse

Fourier transform operators

�H is the Optical Transfer Function (OTF) and H* is its

complex conigate

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• This iterative algorithm is essentially made of some macro-operations

that can be implemented in parallel:

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• This iterative algorithm is essentially made of some macro-operations

that can be implemented in parallel:

– Entry-wise matrix product

– Entry-wise matrix ratio

– Conjugate of complex matrix

– Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise)

operations

– Calculation of acceleration parameter

– DFT

– Inverse DFT

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• This iterative algorithm is essentially made of some macro-operations

that can be implemented in parallel:

– Entry-wise matrix product

– Entry-wise matrix ratio

– Conjugate of complex matrix

– Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise)

operations

– Calculation of acceleration parameter

– DFT

– Inverse DFT

• We just replaced the macro-operation sequential procedures with parallel

CUDA kernels each followed by a synchronization barrier

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Entry-wise calculations can be easily separated in different independent

tasks on different cores utilizing the CUDA threading mechanism and

there is almost no divergence cost during their execution on the GPU, as

there are no conditional statements in the parallel version of such

operations.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Entry-wise calculations can be easily separated in different independent

tasks on different cores utilizing the CUDA threading mechanism and

there is almost no divergence cost during their execution on the GPU, as

there are no conditional statements in the parallel version of such

operations.

• About the DFT calculation, we choose to utilize the CUDA optimized

CUFFT library [6], that has been modeled after the widely used FFTW [7].

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

[7] [M. Frigo, S.G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE, Volume 93, 2005]

[6] [NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library, 2008,

http://developer:download:nvidia:com=compute=cuda=3¡2¡prod=toolkit=docs=CUBLASLibrary:pdf]

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Entry-wise calculations can be easily separated in different independent

tasks on different cores utilizing the CUDA threading mechanism and

there is almost no divergence cost during their execution on the GPU, as

there are no conditional statements in the parallel version of such

operations.

• About the DFT calculation, we choose to utilize the CUDA optimized

CUFFT library [6], that has been modeled after the widely used FFTW [7].

• Each iteration is executed completely on the GPU device, without the

need to move data between host and device memory (let suppose we

have enough space on the GPU global memory).

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

[7] [M. Frigo, S.G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE, Volume 93, 2005]

[6] [NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library, 2008,

http://developer:download:nvidia:com=compute=cuda=3¡2¡prod=toolkit=docs=CUBLASLibrary:pdf]

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• The CPU works as an high level macroscopic control unit which submit

kernel executions, synchronizes the macro-operations, and executes the

control flow directives.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• The CPU works as an high level macroscopic control unit which submit

kernel executions, synchronizes the macro-operations, and executes the

control flow directives.

• We can consider each kernel as a parallel algorithm to analyze.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• The CPU works as an high level macroscopic control unit which submit

kernel executions, synchronizes the macro-operations, and executes the

control flow directives.

• We can consider each kernel as a parallel algorithm to analyze.

• The iterations are stopped when the I-divergence reaches the minimum

value, as usual for those iterative algorithms employed to solve ill posed

problems, because they suffer from the so-called semi-convergence

behavior.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Outline

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Our algorithm has been implemented in C with CUDA extension to run on

a system with 2 NVIDIA Tesla C1060

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Images size is 256 × 271 × 103.

• a), b) e c) show three black and white bidimensional

degraded slices at z = 49, related to the three

fluorescence emissions (CY3, FITC, DAPI);

• d) e) f) show the corresponding restored images

obtained after 9 iterations;

• g) is the RGB sum of a) b) and c);

• h) is the RGB sum of d), e) and f).

Experiments: TEST 1

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

C. Elegans embrio

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Images size is 256 × 271 × 103.

• a), b) e c) show three black and white bidimensional

degraded slices at z = 49, related to the three

fluorescence emissions (CY3, FITC, DAPI);

• d) e) f) show the correspondent restored images

obtained after 9 iterations;

• g) is the RGB sum of a) b) and c);

• h) is the RGB sum of d), e) and f).

Experiments: TEST 1

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• ARL residuals behavior corresponding to CY3, FITC,

DAPI, respectively.

• According to the semi-convergence of ARL algorithm.,

the minimum is reached at iterations 4, 5 and 4,

respectively.

C. Elegans embrio

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Experiments: TEST2

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• Images size is 512 × 512 × 45. .

• a), b) e c) show three black and white bidimensional

degraded slices at z = 29, related to the three

fluorescence emissions (CY3, FITC, DAPI);

• d) e) f) show the correspondent restored images;

• g) is the RGB sum of a) b) and c);

• h) is the RGB sum of d), e) and f).

berry of a mouse mammary epithelial.

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Experiments: TEST2

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• Images size is 512 × 512 × 45. .

• a), b) e c) show three black and white bidimensional

degraded slices at z = 29, related to the three

fluorescence emissions (CY3, FITC, DAPI);

• d) e) f) show the correspondent restored images;

• g) is the RGB sum of a) b) and c);

• h) is the RGB sum of d), e) and f).

• ARL residuals behavior corresponding to CY3, FITC, DAPI,
respectively.

• According to the semi-convergence of ARL algorithm, the
minimum is reached at iterations 7, 10 and 8, respectively.

berry of a mouse mammary epithelial.

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Most of the total execution time is devoted to DFT and IDFT calculation.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Percentage of kernel execution time over total time, per kernel.

Kernels using CUFFT are marked with stripes. In brackets the number of
executions for a deconvolution with a 20 iterations loop.

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• As those calculations are performed using the CUFFT package:

– we rely on developers directions to gain the best performance

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• As those calculations are performed using the CUFFT package:

– we rely on developers directions to gain the best performance

– The FFT algorithms implemented in the package work with the best accuracy

and performance if the transform sizes are (in descending order):

1. power of a single factor, if the transform fits in CUDA’s shared memory,

2. power of two, if the transform doesn’t fit in CUDA’s shared memory,

3. power of four or other small primes (such as three, five, or seven).

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• The execution time is shorter if image sizes are factorizable as of 2a · 3b ·

4c · 5d, longer if they are not.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Execution time of ARL algorithm with different image sizes. Those marked

with “*” are factorizable as 2a · 3b · 4c · 5d

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

• Slow FFTs prolong the entire algorithm execution

• So the parallel ARL on GPU leads to smaller speed-ups if the image sizes

are not factorizable with primes.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Speed-up of ARL algorithm.

Sequential FFT has been implemented utilizing FFTW. Image sizes marked with “*” are
factorizable as 2a · 3b · 4c · 5d

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm
effectiveness

Performance
parameters

Outline

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

How to evaluate the performance

• The CUDA-version algorithm leads clearly to a significant gain in

comparison with the sequential one

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

How to evaluate the performance

• The CUDA-version algorithm leads clearly to a significant gain in

comparison with the sequential one

• But this gain is not easily to explain using the classical parameters for the

evaluation of parallel algorithms

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

How to evaluate the performance

• The CUDA-version algorithm leads clearly to a significant gain in

comparison with the sequential one

• But this gain is not easily to explain using the classical parameters for the

evaluation of parallel algorithms

• So, we notice the need to model the GPUs architectures and their

characteristics to describe the behavior of GPU-algorithms and what we

can expect of them

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

How to evaluate the performance

• The CUDA-version algorithm leads clearly to a significant gain in

comparison with the sequential one

• But this gain is not easily to explain using the classical parameters for the

evaluation of parallel algorithms

• So, we notice the need to model the GPUs architectures and their

characteristics to describe the behavior of GPU-algorithms and what we

can expect of them

• Let’s introduce some results about this focus, following from the

application we described and some others

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Parallel programming- Preliminaries

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Definition 1:

Given any algorithm A, it may be decomposed into two parts (two sets of

instructions):

•SeqA , refers to the sequential part of A, made of operations to execute sequentially,

•ParA refers to the parallel part of A, including operations that can be executed

concurrently.

Parallel programming- Preliminaries

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Definition 2:

Given any algorithm A, and its parallelized version A’

– Tseq (A’) is the time to execute A’ instructions sequentially,

– Tconc (A’, N) is the time to execute A’ instructions if the parallel part is executed by N

concurrent streams of execution.

So

Tseq (A’) = Tseq (Seq A’) + Tseq (Par A’)

and

Tconc (A’, N) = Tseq (Seq A’) + Tconc (Par A’ , N)

Parallel programming- Preliminaries

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Definition 3:

Let Tseq (A) be the sequential execution time of a given algorithm A.

It is always decomposable in:

– Tseq[f lop](A), that measures the time spent in floating point operations by A,

– Tseq[mem] (A), that measures the time spent in memory accesses by A.

Thus

Tseq(A) = Tseq[f lop](A) + Tseq[mem](A)

Parallel programming- Preliminaries

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

We can give an analogous definition for Tconc (A’, N), so it’s also

Tconc (A’, N) = Tconc[f lop](A’, N) + Tconc[mem](A’, N)

Definition 3:

Let Tseq (A) be the sequential execution time of a given algorithm A.

It is always decomposable in:

– Tseq[f lop](A), that measures the time spent in floating point operations by A,

– Tseq[mem] (A), that measures the time spent in memory accesses by A.

Thus

Tseq(A) = Tseq[f lop](A) + Tseq[mem](A)

Let’s now suppose that our GPU-based computing architecture is like the one described in

[10], made of

P Multiprocessors (MP), and Q ALU per MP.

Architecture – functional scheme

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

[10][V. Mele, A. Murli, D. Romano, Some remarks on performance evaluation in parallel GPU computing, Preprint del Dipartimento di

Matematica e applicazioni, Univerity of Naples Federico II, 2011]

Let’s now suppose that our GPU-based computing architecture is like the one described in

[10], made of

P Multiprocessors (MP), and Q ALU per MP.

Architecture – functional scheme

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

…

MP1
MP1

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MP2
MP2

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MPP
MPP

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

Let’s call warp a group of threads that is the execution unit on that machine, that is the

fixed number of threads running simultaneously on the ALUs of each MP at the same

time.

Architecture – functional scheme

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

…

MP1
MP1

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MP2
MP2

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MPP
MPP

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

Let be dimW the dimension of the warp

Architecture – functional scheme

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

…

MP1
MP1

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MP2
MP2

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MPP
MPP

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

Architecture – functional scheme

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

GLOBAL MEMORY

CACHE

schedulerscheduler

…

MP1
MP1

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MP2
MP2

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

MPP
MPP

CUCU

ALUQ
ALUQ

ALU4
ALU4ALU1

ALU1

ALU3
ALU3

ALU2
ALU2 …

K threads at a time

K*Q = dimW

threads at a time

schedulerscheduler

K threads at a time

K threads at a time

K threads at a time

K threads at a time

Architecture – Occupancy

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Suppose that the parallel part of A’, ParA’ ,is executed by p sets of q threads and let q be a

multiple of dimW.

Definition 4:

At a given instant, the occupancy of each MP is a function of the number of threads

running concurrently on that MP, say p1 q, with p1 ≤ p, and is defined as

where

– #threads_per_MP ≤ #max_threads_per_MP is both hardware and p1 q dependent

– #max_warps_per_MP is hardware dependent

– #threads_per_MP(p1 q)/dimW ≤ #max_warps_per_MP

_MP_warps_permax #

ps_MPactive_war#

per_MPmax_warps_#

1

dimW

q)r_MP(pthreads_pe#
 q)(p

1
1 =⋅=ϑ

Architecture – Occupancy

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Definition 4:

At a given instant, the occupancy of each MP is a function of the number of threads

running concurrently on that MP, say p1 q, with p1 ≤ p, and is defined as

where

– #threads_per_MP ≤ #max_threads_per_MP is both hardware and p1 q dependent

– #max_warps_per_MP is hardware dependent

– #threads_per_MP(p1 q)/dimW ≤ #max_warps_per_MP

_MP_warps_permax #

ps_MPactive_war#

per_MPmax_warps_#

1

dimW

q)r_MP(pthreads_pe#
 q)(p

1
1 =⋅=ϑ

Suppose that the parallel part of A’, ParA’ ,is executed by p sets of q threads and let q be a

multiple of dimW.

• The occupancy describes how much are exploited the capabilities of the

MPs.

Performance Analysis

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a

single MP of the described architecture by p sets of q threads, could be written as

follows:

),,'(),,,'(),,,'(

),,'(),'(

][][qpATqpATqpAT

qpATpqAT

Ohmemconcflopconc

concconc

++=
==

ϑϑ

Performance Analysis

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Where, depending on occupancy

if Tconc[f lop] (warpi , dimW) is the execution time spent in floating point operations

by the ith warp, on a single MP,

1
)(

)dim,(
),,,'(1

1

1

0
][

][

dim

>
⋅

=
∑

−

= k
pqk

WwarpT
qpAT

W
q

i
iflopconc

flopconc ϑ
ϑ

Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a

single MP of the described architecture by p sets of q threads, could be written as

follows:

),,'(),,,'(),,,'(

),,'(),'(

][][qpATqpATqpAT

qpATpqAT

Ohmemconcflopconc

concconc

++=
==

ϑϑ

Performance Analysis

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Where, depending on occupancy

Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a

single MP of the described architecture by p sets of q threads, could be written as

follows:

),,'(),,,'(),,,'(

),,'(),'(

][][qpATqpATqpAT

qpATpqAT

Ohmemconcflopconc

concconc

++=
==

ϑϑ

Performance Analysis

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

if Tconc[mem] (warpi , dimW) is the execution time spent in memory accesses by the

ith warp, on a single MP,

1))((0
))((

)dim,(
),,,'(2

1

0
][

][

dim

>≤<=
∑

−

= kpq
pq

WwarpT
qpAT

W
q

i
imemconc

memconc ϑϕ
ϑϕ

ϑ

Where, depending on occupancy

Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a

single MP of the described architecture by p sets of q threads, could be written as

follows:

),,'(),,,'(),,,'(

),,'(),'(

][][qpATqpATqpAT

qpATpqAT

Ohmemconcflopconc

concconc

++=
==

ϑϑ

and where

Performance Analysis

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

TOh (p, q) is the overhead that includes cost of kernel

launch, host/device data transfers, synchronization,

divergence and data non-coalescence.

Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a

single MP of the described architecture by p sets of q threads, could be written as

follows:

),,'(),,,'(),,,'(

),,'(),'(

][][qpATqpATqpAT

qpATpqAT

Ohmemconcflopconc

concconc

++=
==

ϑϑ

Outline

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We described the benefits arising from facing medical imaging problems

on GPUs, that are non-expensive parallel processing devices available on

many up-to-date personal computers.

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We described the benefits arising from facing medical imaging problems

on GPUs, that are non-expensive parallel processing devices available on

many up-to-date personal computers.

• We consider the deconvolution of 3D Fluorescence Microscopy images:
– The algorithm reaches a high performance on GPUs because many of the

steps in the sequential algorithm consist in entry-wise matrix operations, that

means they are embarrassingly parallel tasks efficiently executable on many-

core GPUs.

– such operations on big images can keep the GPU well occupied making the

most of the Streaming Multiprocessor (SM) compute capabilities.

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We described the benefits arising from facing medical imaging problems

on GPUs, that are non-expensive parallel processing devices available on

many up-to-date personal computers.

• We consider the deconvolution of 3D Fluorescence Microscopy images:
– The algorithm reaches a high performance on GPUs because many of the

steps in the sequential algorithm consist in entry-wise matrix operations, that

means they are embarrassingly parallel tasks efficiently executable on many-

core GPUs.

– such operations on big images can keep the GPU well occupied making the

most of the Streaming Multiprocessor (SM) compute capabilities.

• We built an efficient implementation with significant speed ups on the

real case.

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• Obtained results open some considerations about the applicability of

classical evaluation parameters and leads to the aim of modeling the

performance of algorithms on the modern GPU-enhanced computing

environments

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• Obtained results open some considerations about the applicability of

classical evaluation parameters and leads to the aim of modeling the

performance of algorithms on the modern GPU-enhanced computing

environments

• We first expressed the execution time of the algorithm in terms of the

widely used optimization parameter, that is the occupancy.

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• Obtained results open some considerations about the applicability of

classical evaluation parameters and leads to the aim of modeling the

performance of algorithms on the modern GPU-enhanced computing

environments

• We first expressed the execution time of the algorithm in terms of the

widely used optimization parameter, that is the occupancy.

• But it’s not the end of the way…

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We should identify but also well-define some parameters that influence

the expected speed up and the actual performance

Work in progress

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We should identify but also well-define some parameters that influence

the expected speed up and the actual performance

• First of all, the φ(θ(pq)) function has to be characterized

Work in progress

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We should identify but also well-define some parameters that influence

the expected speed up and the actual performance

• First of all, the φ(θ(pq)) function has to be characterized

• It is useful to define a kind of ideal Speed up to know what gain to expect

when programming in a GPU-enabled environment.

Work in progress

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We should identify but also well-define some parameters that influence

the expected speed up and the actual performance

• First of all, the φ(θ(pq)) function has to be characterized

• It is useful to define a kind of ideal Speed up to know what gain to expect

when programming in a GPU-enabled environment.

• Each found parameter has to be studied with a variety of known

algorithm and applications field to validate the performance model

Work in progress

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• We should identify but also well-define some parameters that influence

the expected speed up and the actual performance

• First of all, the φ(θ(pq)) function has to be characterized

• It is useful to define a kind of ideal Speed up to know what gain to expect

when programming in a GPU-enabled environment.

• Each found parameter has to be studied with a variety of known

algorithm and applications field to validate the performance model

• For now…

Work in progress

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Thank you

For Attention!

1. Agard D. A., Hiraoki Y. and Sedat J.W. - Three-dimensional microscopy: image processing for

high-resolution subcellular imaging, Proc. SPIE 1161, 1989, pp. 24-30.

2. D. S. C. Biggs and M. Andrews - Acceleration of iterative image restoration algorithms.

Applied Optics. Vol 36(8), pp. 17661775, 1997.

3. Csiszar I. - Why least squares and maximum entropy? An axiomatic approach to inference for

linear inverse problems. The Annals of Statistics, 1991, Vol. 19, n.4, pp. 2031-2066.

4. L. B. Lucy - An iterative technique for the rectification of observed images. The Astronomical

Journal. Vol 79(6), pp. 745-754, 1974.

5. W. H. Richardson - Bayesian-based iterative method of image restoration. Journal of the

Optical Society of America. Vol 62(1), pp. 55-59, 1972.

6. A. N. Tikhonov, and V. Y. Arsenin - Solutions of ill-posed problems, (1977), New York, Wiley

References

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

6. NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library, 2008,

http

://developer:download:nvidia:com=compute=cuda=3¡2¡prod=toolkit=docs=CUBLASLibrary:

pdf

9. M. Frigo, S.G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE,

Volume 93, 2005

10. V. Mele, A. Murli, D. Romano, Some remarks on performance evaluation in parallel GPU

computing, Preprint del Dipartimento di Matematica e applicazioni, Univerity of Naples

Federico II, 2011

11. Volkov, V., and Demmel, J. W. 2008. Benchmarking GPUs to tune dense linear algebra,

Proceedings of the ACM/IEEE Conference on Supercomputing (SC08), 2008

12. Volkov, V. Better performance at lower occupancy, Presentations at GPU Technology

Conference 2010 (GTC 2010)

References

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

