9TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING AND APPLIED MATHEMATICS September 11-14, 2011, Torun, Poland

Deconvolution of 3D Fluorescence Microscopy Images using Graphics Processing Units

Luisa D'Amore, University of Naples Federico II Valeria Mele, University of Naples Federico II Livia Marcellino, University of Naples Parthenope Diego Romano, ICAR-CNR

The present work

 we describe some performance analysis parameters for algorithms running on GPUs starting from the experience done with a

CUDA-based algorithm

for restoration of 3D images acquired by a fluorescence microscope based on the

Lucy-Richardson deconvolution algorithm

4.Blur

• Application problem definition

- Application problem definition
- The algorithm and GPUs

- Application problem definition
- The algorithm and GPUs
- Algorithm effectiveness

- Application problem definition
- The algorithm and GPUs
- Algorithm effectiveness
- Performance analysis parameters

- Application problem definition
- The algorithm and GPUs
- Algorithm effectiveness
- Performance analysis parameters
- Conclusions and work in progress

• Application problem definition

Fluorescence Microscopy

- A fluorescence microscope is a light microscope used to study properties of organic or inorganic substances, lighting them by UV rays
- In biomedical research, fluorescence microscopy is widely used to analyze 3-D structures of living biological cells and tissues.

• It uses the phenomenon of fluorescence and phosphorescence instead of - or in addition to - reflection and absorption.

Valeria Mele

Image Restoration by Deconvolution

 Fluorescence microscope imaging properties and measurement imperfections distort the original 3D image and reduce the maximal resolution obtainable by the imaging system, thereby restricting the quantitative analysis of the 3D specimen.

4.Blur

Image Restoration by Deconvolution

- Fluorescence microscope imaging properties and measurement imperfections distort the original 3D image and reduce the maximal resolution obtainable by the imaging system, thereby restricting the quantitative analysis of the 3D specimen.
- **Deconvolution** is an operation that mitigates that distortion, that is by deconvolution we can restore the image

1.Noise 2.Scattering 3.Glare 4.Blur

- Application problem definition
- The algorithm and GPUs

Mathematically, the deconvolution is an **inverse problem** written as:

H[f] = g

Valeria Mele

Mathematically, the deconvolution is an **inverse problem** written as:

H[f] = g

•that we solve using the **Expectation Maximization-Richardson Lucy algorithm** (in matrix form)

$$f_{k+1} = f_k H^T \frac{g}{Y_k}, \quad Y_k = H f_k \longrightarrow$$
To be accellerated following [2]

[2] [D. S. C. Biggs and M. Andrews - Acceleration of iterative image restoration algorithms. Applied Optics. Vol 36(8), pp. 17661775, 1997]

EM-RL (spatial domain)

$$f_{k+1} = f_k H^T \frac{g}{Y_k}, \qquad Y_k = H f_k$$

EM-RL (spatial domain) $f_{k+1} = f_k H^T \frac{g}{Y_k}, \qquad Y_k = H f_k$ **Convolution Theorem EM-RL** (frequency domain) $f_{k+1} = f_k \cdot \mathscr{F}^{-1} \left(H^* \cdot \mathscr{F} \left(\frac{g}{\mathscr{F}^{-1}(H \cdot F_k)} \right) \right),$ k > 0Where capital letters denote the transformed functions •F⁻ and F⁻ -¹ are the Furier transform and the Inverse Fourier transform operators •*H* is the Optical Transfer Function (OTF) and H^* is its complex conigate

• This iterative algorithm is essentially made of some macro-operations that can be implemented in parallel:

$$f_{k+1} = f_k \cdot \mathscr{F}^{-1} \left(H^* \cdot \mathscr{F} \left(\frac{g}{\mathscr{F}^{-1}(H \cdot F_k)} \right) \right), \quad k > 0$$

- This iterative algorithm is essentially made of some macro-operations that can be implemented in parallel:
 - Entry-wise matrix product

$$f_{k+1} = f_k \cdot \mathscr{F}^{-1} \left(H^* \cdot \mathscr{F} \left(\frac{g}{\mathscr{F}^{-1}(H \cdot F_k)} \right) \right), \quad k > 0$$

- Entry-wise matrix ratio
- Conjugate of complex matrix
- Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise) operations
- Calculation of acceleration parameter
- DFT
- Inverse DFT

- This iterative algorithm is essentially made of some macro-operations that can be implemented in parallel:
 - Entry-wise matrix product

$$f_{k+1} = f_k \cdot \mathscr{F}^{-1} \left(H^* \cdot \mathscr{F} \left(\frac{g}{\mathscr{F}^{-1}(H \cdot F_k)} \right) \right), \quad k > 0$$

- Conjugate of complex matrix
- Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise) operations
- Calculation of acceleration parameter
- DFT
- Inverse DFT
- We just replaced the macro-operation sequential procedures with parallel CUDA kernels each followed by a synchronization barrier

• Entry-wise calculations can be easily separated in different independent tasks on different cores utilizing the CUDA threading mechanism and there is almost no divergence cost during their execution on the GPU, as there are no conditional statements in the parallel version of such operations.

- Entry-wise calculations can be easily separated in different independent tasks on different cores utilizing the CUDA threading mechanism and there is almost no divergence cost during their execution on the GPU, as there are no conditional statements in the parallel version of such operations.
- About the DFT calculation, we choose to utilize the CUDA optimized CUFFT library [6], that has been modeled after the widely used FFTW [7].

[6] [NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library, 2008, http://developer:download:nvidia:com=compute=cuda=3;2;prod=toolkit=docs=CUBLASLibrary:pdf]

[7] [M. Frigo, S.G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE, Volume 93, 2005]

- Entry-wise calculations can be easily separated in different independent tasks on different cores utilizing the CUDA threading mechanism and there is almost no divergence cost during their execution on the GPU, as there are no conditional statements in the parallel version of such operations.
- About the DFT calculation, we choose to utilize the CUDA optimized CUFFT library [6], that has been modeled after the widely used FFTW [7].
- Each iteration is executed completely on the GPU device, without the need to move data between host and device memory (let suppose we have enough space on the GPU global memory).

[6] [NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library, 2008, http://developer:download:nvidia:com=compute=cuda=3;2;prod=toolkit=docs=CUBLASLibrary:pdf]

[7] [M. Frigo, S.G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE, Volume 93, 2005]

• The CPU works as an high level macroscopic control unit which submit kernel executions, synchronizes the macro-operations, and executes the control flow directives.

- The CPU works as an high level macroscopic control unit which submit kernel executions, synchronizes the macro-operations, and executes the control flow directives.
- We can consider each kernel as a parallel algorithm to analyze.

- The CPU works as an high level macroscopic control unit which submit kernel executions, synchronizes the macro-operations, and executes the control flow directives.
- We can consider each kernel as a parallel algorithm to analyze.
- The iterations are stopped when the I-divergence reaches the minimum value, as usual for those iterative algorithms employed to solve ill posed problems, because they suffer from the so-called semi-convergence behavior.

- Application problem definition
- The algorithm and GPUs
- Algorithm effectiveness

• Our algorithm has been implemented in C with CUDA extension to run on a system with 2 NVIDIA Tesla C1060

Tesla C1060 details	
Codename	GT200
Interface	PCI Express 2.0 16x
Streaming Multiprocessors (SM)	30
Streaming Processor (SP) cores	240
SP core Frequency	1300 MHz
SDRAM	4 GB
Memory Bandwidth	102 GB/2
Peak GFLOPs Single precision	936
Peak GFLOPs Double precision	78

- Images size is 256 × 271 × 103.
- a), b) e c) show three black and white bidimensional degraded slices at z = 49, related to the three fluorescence emissions (CY₃, FITC, DAPI);
- d) e) f) show the corresponding restored images obtained after 9 iterations;
- g) is the RGB sum of a) b) and c);
- h) is the RGB sum of d), e) and f).

C. Elegans embrio

- Images size is 256 × 271 × 103.
- a), b) e c) show three black and white bidimensional degraded slices at z = 49, related to the three fluorescence emissions (CY₃, FITC, DAPI);
- d) e) f) show the correspondent restored images obtained after 9 iterations;
- g) is the RGB sum of a) b) and c);
- h) is the RGB sum of d), e) and f).

C. Elegans embrio

- ARL residuals behavior corresponding to CY₃, FITC, DAPI, respectively.
- According to the semi-convergence of ARL algorithm., the minimum is reached at iterations 4, 5 and 4, respectively.

- Images size is 512 × 512 × 45. .
- a), b) e c) show three black and white bidimensional degraded slices at z = 29, related to the three fluorescence emissions (CY₃, FITC, DAPI);
- d) e) f) show the correspondent restored images;
- g) is the RGB sum of a) b) and c);
- h) is the RGB sum of d), e) and f).

berry of a mouse mammary epithelial.

- Images size is 512 × 512 × 45. .
- a), b) e c) show three black and white bidimensional degraded slices at z = 29, related to the three fluorescence emissions (CY₃, FITC, DAPI);
- d) e) f) show the correspondent restored images;
- g) is the RGB sum of a) b) and c);
- h) is the RGB sum of d), e) and f).

berry of a mouse mammary epithelial.

- ARL residuals behavior corresponding to CY₃, FITC, DAPI, respectively.
- According to the semi-convergence of ARL algorithm, the minimum is reached at iterations 7, 10 and 8, respectively.

PPAM11 - September 11-14, 2011, Torun, Poland

Valeria Mele

• Most of the total execution time is devoted to DFT and IDFT calculation.

Percentage of kernel execution time over total time, per kernel. Kernels using CUFFT are marked with stripes. In brackets the number of executions for a deconvolution with a 20 iterations loop.

- As those calculations are performed using the CUFFT package:
 - we rely on developers directions to gain the best performance

- As those calculations are performed using the CUFFT package:
 - we rely on developers directions to gain the best performance
 - The FFT algorithms implemented in the package work with the best accuracy and performance if the transform sizes are (in descending order):
 - 1. power of a single factor, if the transform fits in CUDA's shared memory,
 - 2. power of two, if the transform doesn't fit in CUDA's shared memory,
 - 3. power of four or other small primes (such as three, five, or seven).

• The execution time is shorter if image sizes are factorizable as of $2^a \cdot 3^b \cdot 4^c \cdot 5^d$, longer if they are not.

with "*" are factorizable as 2^a · 3^b · 4^c · 5^d

PPAM11 - September 11-14, 2011, Torun, Poland

Valeria Mele

- Slow FFTs prolong the entire algorithm execution
- So the parallel ARL on GPU leads to smaller speed-ups if the image sizes are not factorizable with primes.

Speed-up of ARL algorithm. Sequential FFT has been implemented utilizing FFTW. Image sizes marked with "*" are factorizable as 2^a · 3^b · 4^c · 5^d

PPAM11 - September 11-14, 2011, Torun, Poland

Valeria Mele

Outline

- Application problem definition
- The algorithm and GPUs
- Algorithm effectiveness
- Performance analysis parameters

• The CUDA-version algorithm leads clearly to a significant gain in comparison with the sequential one

- The CUDA-version algorithm leads clearly to a significant gain in comparison with the sequential one
- But this gain is not easily to explain using the classical parameters for the evaluation of parallel algorithms

- The CUDA-version algorithm leads clearly to a significant gain in comparison with the sequential one
- But this gain is not easily to explain using the classical parameters for the evaluation of parallel algorithms
- So, we notice the need to model the GPUs architectures and their characteristics to describe the behavior of GPU-algorithms and what we can expect of them

- The CUDA-version algorithm leads clearly to a significant gain in comparison with the sequential one
- But this gain is not easily to explain using the classical parameters for the evaluation of parallel algorithms
- So, we notice the need to model the GPUs architectures and their characteristics to describe the behavior of GPU-algorithms and what we can expect of them
- Let's introduce some results about this focus, following from the application we described and some others

Work in

progress

Parallel programming- Preliminaries

Definition 1:

Given any algorithm A, it may be decomposed into two parts (two sets of instructions):

•Seq_A, refers to the *sequential part* of A, made of operations to execute sequentially,

•Par_A refers to the *parallel part* of A, including operations that can be executed concurrently.

Parallel programming- Preliminaries

Definition 2:

Given any algorithm A, and its parallelized version A'

Problem

 $-T_{seq}(A')$ is the time to execute A' instructions sequentially,

 $-T_{conc}(A', N)$ is the time to execute A' instructions if the parallel part is executed by N concurrent streams of execution.

So

$$T_{seq}(A') = T_{seq}(Seq_{A'}) + T_{seq}(Par_{A'})$$

and

$$T_{conc}(A', N) = T_{seq}(Seq_{A'}) + T_{conc}(Par_{A'}, N)$$

Parallel programming- Preliminaries

Definition 3: Let T_{seq} (A) be the sequential execution time of a given algorithm A. It is always decomposable in: $-T_{seq[flop]}(A)$, that measures the time spent in floating point operations by A, $-T_{seq[mem]}(A)$, that measures the time spent in memory accesses by A. Thus

 $T_{seq}(A) = T_{seq[flop]}(A) + T_{seq[mem]}(A)$

Parallel programming- Preliminaries

Problem

Definition 3: Let T_{seq} (A) be the sequential execution time of a given algorithm A. It is always decomposable in: $-T_{seq[flop]}(A)$, that measures the time spent in floating point operations by A, $-T_{seq[mem]}$ (A), that measures the time spent in memory accesses by A. Thus

 $T_{seq}(A) = T_{seq[flop]}(A) + T_{seq[mem]}(A)$

We can give an analogous definition for T_{conc} (A', N), so it's also

$$T_{conc}(A', N) = T_{conc[flop]}(A', N) + T_{conc[mem]}(A', N)$$

Architecture – functional scheme

Let's now suppose that our GPU-based computing architecture is like the one described in [10], made of

P Multiprocessors (MP), and **Q** ALU per MP.

[10][V. Mele, A. Murli, D. Romano, Some remarks on performance evaluation in parallel GPU computing, Preprint del Dipartimento di Matematica e applicazioni, Univerity of Naples Federico II, 2011]

Valeria Mele

PPAM11 - September 11-14, 2011, Torun, Poland

Architecture – functional scheme

Let's now suppose that our GPU-based computing architecture is like the one described in [10], made of

P Multiprocessors (MP), and **Q** ALU per MP.

PPAM11 - September 11-14, 2011, Torun, Poland

scheduler

Local

private

memory

K threads at a time

ALU,

. . .

K threads at a time

ALU_o

K*Q = dimW

threads at a time

Architecture – functional scheme

Let's call **warp** a group of threads that is the execution unit on that machine, that is the fixed number of threads running simultaneously on the ALUs of each MP at the same time.

PPAM11 - September 11-14, 2011, Torun, Poland

. . .

Architecture – functional scheme

Let be *dimW* the dimension of the warp

PPAM11 - September 11-14, 2011, Torun, Poland

Architecture – functional scheme

PPAM11 - September 11-14, 2011, Torun, Poland

Architecture – Occupancy

Suppose that the parallel part of A', $Par_{A'}$, is executed by **p** sets of **q** threads and let q be a multiple of dimW.

Definition 4: At a given instant, the *occupancy* of each MP is a function of the number of threads running concurrently on that MP, say $p^1 q$, with $p^1 \le p$, and is defined as $\vartheta(p^1q) = \frac{\# \text{threads_per_MP}(p^1q)}{\dim W} \cdot \frac{1}{\# \max_warps_per_MP} = \frac{\# \text{active_warps_MP}}{\# \max_warps_per_MP}$ where $-\# \text{threads_per_MP} \le \# \max_\text{threads_per_MP}$ is both hardware and $p^1 q$ dependent $-\# \max_warps_per_MP$ is hardware dependent $-\# \text{threads_per_MP}(p^1 q)/\dim W \le \# \max_warps_per_MP}$

Architecture – Occupancy

Suppose that the parallel part of A', $Par_{A'}$, is executed by **p** sets of **q** threads and let q be a multiple of dimW.

• The occupancy describes how much are exploited the capabilities of the MPs.

PPAM11 - September 11-14, 2011, Torun, Poland

Proposition

The expected total execution time of a parallel algorithm A' designed to run on a single MP of the described architecture by p sets of q threads, could be written as follows:

$$T_{conc}(A', pq) = T_{conc}(A', p, q) =$$

= $T_{conc[flop]}(A', p, q, \vartheta) + T_{conc[mem]}(A', p, q, \vartheta) + T_{Oh}(A', p, q)$

Proposition

The expected total execution time of a parallel algorithm A' designed to run on a single MP of the described architecture by p sets of q threads, could be written as follows:

$$T_{conc}(A', pq) = T_{conc}(A', p, q) =$$

= $T_{conc[flop]}(A', p, q, \vartheta) + T_{conc[mem]}(A', p, q, \vartheta) + T_{Oh}(A', p, q)$

Where, depending on occupancy

if $T_{conc[flop]}(warp_i, dimW)$ is the execution time spent in floating point operations by the ith warp, on a single MP,

$$T_{conc[flop]}(A', p, q, \vartheta) = \frac{\sum_{i=0}^{\vartheta_{\dim W}^{-1}} T_{conc[flop]}(warp_i, \dim W)}{k_1 \cdot \vartheta(pq)} \qquad k_1 > 1$$

Valeria Mele

PPAM11 - September 11-14, 2011, Torun, Poland

Proposition

The expected total execution time of a parallel algorithm A' designed to run on a single MP of the described architecture by p sets of q threads, could be written as follows:

$$T_{conc}(A', pq) = T_{conc}(A', p, q) =$$

= $T_{conc[flop]}(A', p, q, \vartheta) + T_{conc[mem]}(A', p, q, \vartheta) + T_{Oh}(A', p, q)$

Where, depending on occupancy

Proposition

The expected total execution time of a parallel algorithm A' designed to run on a single MP of the described architecture by p sets of q threads, could be written as follows:

$$T_{conc}(A', pq) = T_{conc}(A', p, q) =$$

= $T_{conc[flop]}(A', p, q, \vartheta) + T_{conc[mem]}(A', p, q, \vartheta) + T_{Oh}(A', p, q)$

Where, depending on occupancy

if $T_{conc[mem]}(warp_i, dimW)$ is the execution time spent in memory accesses by the ith warp, on a single MP, $T_{conc[mem]}(A', p, q, \vartheta) = \frac{\sum_{i=0}^{q'_{dimW}-1} T_{conc[mem]}(warp_i, \dim W)}{\varphi(\vartheta(pq))} \qquad 0 < \varphi(\vartheta(pq)) \le k_2 > 1$

Valeria Mele

PPAM11 - September 11-14, 2011, Torun, Poland

Proposition

The expected total execution time of a parallel algorithm A' designed to run on a single MP of the described architecture by p sets of q threads, could be written as follows:

$$T_{conc}(A', pq) = T_{conc}(A', p, q) =$$

= $T_{conc[flop]}(A', p, q, \vartheta) + T_{conc[mem]}(A', p, q, \vartheta) + T_{Oh}(A', p, q)$

and where

 $T_{Oh}(p, q)$ is the overhead that includes cost of kernel launch, host/device data transfers, synchronization, divergence and data non-coalescence.

Outline

- Application problem definition
- The algorithm and GPUs
- Algorithm effectiveness
- Performance analysis parameters
- Conclusions and work in progress

• We described the benefits arising from facing medical imaging problems on GPUs, that are non-expensive parallel processing devices available on many up-to-date personal computers.

- We described the benefits arising from facing medical imaging problems on GPUs, that are non-expensive parallel processing devices available on many up-to-date personal computers.
- We consider the **deconvolution of 3D Fluorescence Microscopy images**:
 - The algorithm reaches a high performance on GPUs because many of the steps in the sequential algorithm consist in entry-wise matrix operations, that means they are embarrassingly parallel tasks efficiently executable on manycore GPUs.
 - such operations on big images can keep the GPU well occupied making the most of the Streaming Multiprocessor (SM) compute capabilities.

- We described the benefits arising from facing medical imaging problems on GPUs, that are non-expensive parallel processing devices available on many up-to-date personal computers.
- We consider the **deconvolution of 3D Fluorescence Microscopy images**:
 - The algorithm reaches a high performance on GPUs because many of the steps in the sequential algorithm consist in entry-wise matrix operations, that means they are embarrassingly parallel tasks efficiently executable on manycore GPUs.
 - such operations on big images can keep the GPU well occupied making the most of the Streaming Multiprocessor (SM) compute capabilities.
- We built an efficient implementation with significant speed ups on the real case.

• Obtained results open some considerations about the applicability of classical **evaluation parameters** and leads to the aim of modeling the performance of algorithms on the modern GPU-enhanced computing environments

- Obtained results open some considerations about the applicability of classical **evaluation parameters** and leads to the aim of modeling the performance of algorithms on the modern GPU-enhanced computing environments
- We first expressed the execution time of the algorithm in terms of the widely used optimization parameter, that is the **occupancy**.

- Obtained results open some considerations about the applicability of classical **evaluation parameters** and leads to the aim of modeling the performance of algorithms on the modern GPU-enhanced computing environments
- We first expressed the execution time of the algorithm in terms of the widely used optimization parameter, that is the **occupancy**.
- But it's not the end of the way...

• We should identify but also well-define some parameters that influence the expected speed up and the actual performance

- We should identify but also well-define some parameters that influence the expected speed up and the actual performance
- First of all, the $\varphi(\vartheta(pq))$ function has to be characterized

- We should identify but also well-define some parameters that influence the expected speed up and the actual performance
- First of all, the $\varphi(\vartheta(pq))$ function has to be characterized
- It is useful to define a kind of *ideal Speed up* to know what gain to expect when programming in a GPU-enabled environment.

- We should identify but also well-define some parameters that influence the expected speed up and the actual performance
- First of all, the $\varphi(\vartheta(pq))$ function has to be characterized
- It is useful to define a kind of *ideal Speed up* to know what gain to expect when programming in a GPU-enabled environment.
- Each found parameter has to be studied with a variety of known algorithm and applications field to validate the performance model

- We should identify but also well-define some parameters that influence the expected speed up and the actual performance
- First of all, the $\varphi(\vartheta(pq))$ function has to be characterized
- It is useful to define a kind of *ideal Speed up* to know what gain to expect when programming in a GPU-enabled environment.
- Each found parameter has to be studied with a variety of known algorithm and applications field to validate the performance model
- For now...

Thank you For Attention!

PPAM11 - September 11-14, 2011, Torun, Poland

References

- 1. Agard D. A., Hiraoki Y. and Sedat J.W. *Three-dimensional microscopy: image processing for high-resolution subcellular imaging*, Proc. SPIE 1161, 1989, pp. 24-30.
- 2. D. S. C. Biggs and M. Andrews Acceleration of iterative image restoration algorithms. Applied Optics. Vol 36(8), pp. 17661775, 1997.
- 3. Csiszar I. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. The Annals of Statistics, 1991, Vol. 19, n.4, pp. 2031-2066.
- 4. L. B. Lucy *An iterative technique for the rectification of observed images*. The Astronomical Journal. Vol 79(6), pp. 745-754, 1974.
- 5. W. H. Richardson *Bayesian-based iterative method of image restoration*. Journal of the Optical Society of America. Vol 62(1), pp. 55-59, 1972.
- 6. A. N. Tikhonov, and V. Y. Arsenin *Solutions of ill-posed problems*, (1977), New York, Wiley

References

6. NVIDIA Corporation, *Documentation for CUDA FFT (CUFFT) Library*, 2008, http

://developer:download:nvidia:com=compute=cuda=3i2iprod=toolkit=docs=CUBLASLibrary: pdf

- 9. M. Frigo, S.G. Johnson, *The design and implementation of fftw*3, Proceedings of the IEEE, Volume 93, 2005
- 10. V. Mele, A. Murli, D. Romano, *Some remarks on performance evaluation in parallel GPU computing*, Preprint del Dipartimento di Matematica e applicazioni, Univerity of Naples Federico II, 2011
- 11. Volkov, V., and Demmel, J. W. 2008. *Benchmarking GPUs to tune dense linear algebra*, Proceedings of the ACM/IEEE Conference on Supercomputing (SC08), 2008
- 12. Volkov, V. *Better performance at lower occupancy*, Presentations at GPU Technology Conference 2010 (GTC 2010)