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• A fluorescence microscope is a light microscope used to study properties 
of organic or inorganic substances, lighting them by UV rays

• In biomedical research, fluorescence microscopy is widely used to analyze 
3-D structures of living biological cells and tissues.

• It uses the phenomenon of fluorescence and phosphorescence instead of 
- or in addition to - reflection and absorption.

Fluorescence Microscopy
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• Fluorescence microscope imaging 

properties and measurement 

imperfections distort the original 3D 

image and reduce the maximal resolution 

obtainable by the imaging system, thereby 

restricting the quantitative analysis of the 

3D specimen. 
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Mathematically, the deconvolution is an inverse problem written as: 

The Lucy-Richardson algorithm
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Mathematically, the deconvolution is an inverse problem written as:

•that we solve using the Expectation Maximization-Richardson Lucy 

algorithm (in matrix form)

The Lucy-Richardson algorithm
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To be accellerated 

following [2]

[2] [D. S. C. Biggs and M. Andrews - Acceleration of iterative image restoration algorithms. Applied Optics. Vol 36(8), pp. 17661775, 1997]
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The Lucy-Richardson algorithm
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Convolution Theorem

EM-RL (spatial domain)

EM-RL (frequency domain)

Where:

�capital letters denote the transformed functions

�F- and F- -1 are the Furier transform and the Inverse 

Fourier transform operators

�H is the Optical Transfer Function (OTF) and H* is its 

complex conigate
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• This iterative algorithm is essentially made of some macro-operations 

that can be implemented in parallel:

ARL algorithm using a GPU
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• This iterative algorithm is essentially made of some macro-operations 

that can be implemented in parallel:

– Entry-wise matrix product

– Entry-wise matrix ratio

– Conjugate of complex matrix

– Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise) 

operations

– Calculation of acceleration parameter

– DFT

– Inverse DFT
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• This iterative algorithm is essentially made of some macro-operations 

that can be implemented in parallel:

– Entry-wise matrix product

– Entry-wise matrix ratio

– Conjugate of complex matrix

– Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise) 

operations

– Calculation of acceleration parameter

– DFT

– Inverse DFT

• We just replaced the macro-operation sequential procedures with parallel 

CUDA kernels each followed by a synchronization barrier

ARL algorithm using a GPU
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• Entry-wise calculations can be easily separated in different independent 

tasks on different cores utilizing the CUDA threading mechanism and 

there is almost no divergence cost during their execution on the GPU, as 

there are no conditional statements in the parallel version of such 

operations.

ARL algorithm using a GPU
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• Entry-wise calculations can be easily separated in different independent 

tasks on different cores utilizing the CUDA threading mechanism and 

there is almost no divergence cost during their execution on the GPU, as 

there are no conditional statements in the parallel version of such 

operations.

• About the DFT calculation, we choose to utilize the CUDA optimized 

CUFFT library [6], that has been modeled after the widely used FFTW [7]. 

ARL algorithm using a GPU
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[7] [M. Frigo, S.G. Johnson, The design and implementation of fftw3, Proceedings of the IEEE, Volume 93, 2005]

[6] [NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library, 2008, 

http://developer:download:nvidia:com=compute=cuda=3¡2¡prod=toolkit=docs=CUBLASLibrary:pdf]
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• Entry-wise calculations can be easily separated in different independent 

tasks on different cores utilizing the CUDA threading mechanism and 

there is almost no divergence cost during their execution on the GPU, as 

there are no conditional statements in the parallel version of such 

operations.

• About the DFT calculation, we choose to utilize the CUDA optimized 

CUFFT library [6], that has been modeled after the widely used FFTW [7]. 

• Each iteration is executed completely on the GPU device, without the 

need to move data between host and device memory (let suppose we

have enough space on the GPU global memory). 

ARL algorithm using a GPU
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• The CPU works as an high level macroscopic control unit which submit 

kernel executions, synchronizes the macro-operations, and executes the 

control flow directives.
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• The CPU works as an high level macroscopic control unit which submit 

kernel executions, synchronizes the macro-operations, and executes the 

control flow directives.

• We can consider each kernel as a parallel algorithm to analyze. 
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• The CPU works as an high level macroscopic control unit which submit 

kernel executions, synchronizes the macro-operations, and executes the 

control flow directives.

• We can consider each kernel as a parallel algorithm to analyze. 

• The iterations are stopped when the I-divergence reaches the minimum 

value, as usual for those iterative algorithms employed to solve ill posed 

problems, because they suffer from the so-called semi-convergence 

behavior. 

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm 
effectiveness

Performance
parameters



Outline

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Work in progress
Problem
definition

Algorithm
and GPUs

Algorithm 
effectiveness

Performance
parameters



• Our algorithm has been implemented in C with CUDA extension to run on 

a system with 2 NVIDIA Tesla C1060

ARL algorithm using a GPU
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• Images size is 256 × 271 × 103. 

• a), b) e c) show three black and white bidimensional 

degraded slices at z = 49, related to the three 

fluorescence emissions (CY3, FITC, DAPI); 

• d) e) f) show the corresponding restored images 

obtained after 9 iterations; 

• g) is the RGB sum of a) b) and c); 

• h) is the RGB sum of d), e) and f). 

Experiments: TEST 1
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• Images size is 256 × 271 × 103. 

• a), b) e c) show three black and white bidimensional 

degraded slices at z = 49, related to the three 

fluorescence emissions (CY3, FITC, DAPI); 

• d) e) f) show the correspondent restored images 

obtained after 9 iterations; 

• g) is the RGB sum of a) b) and c); 

• h) is the RGB sum of d), e) and f). 

Experiments: TEST 1

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

• ARL residuals behavior corresponding to CY3, FITC, 

DAPI, respectively. 

• According to the semi-convergence of ARL algorithm., 

the minimum is reached at iterations 4, 5 and 4, 

respectively.
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Experiments: TEST2
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• Images size is 512 × 512 × 45. . 

• a), b) e c) show three black and white bidimensional 

degraded slices at z = 29, related to the three 

fluorescence emissions (CY3, FITC, DAPI); 

• d) e) f) show the correspondent restored images; 

• g) is the RGB sum of a) b) and c); 

• h) is the RGB sum of d), e) and f). 

berry of a mouse mammary epithelial.
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Experiments: TEST2
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• Images size is 512 × 512 × 45. . 

• a), b) e c) show three black and white bidimensional 

degraded slices at z = 29, related to the three 

fluorescence emissions (CY3, FITC, DAPI); 

• d) e) f) show the correspondent restored images; 

• g) is the RGB sum of a) b) and c); 

• h) is the RGB sum of d), e) and f). 

• ARL residuals behavior corresponding to CY3, FITC, DAPI, 
respectively. 

• According to the semi-convergence of ARL algorithm, the 
minimum is reached at iterations 7, 10 and 8, respectively.

berry of a mouse mammary epithelial.
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• Most of the total execution time is devoted to DFT and IDFT calculation. 

ARL algorithm using a GPU
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Percentage of kernel execution time over total time, per kernel.

Kernels using CUFFT are marked with stripes. In brackets the number of 
executions for a deconvolution with a 20 iterations loop.
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• As those calculations are performed using the CUFFT package: 

– we rely on developers directions to gain the best performance

ARL algorithm using a GPU
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• As those calculations are performed using the CUFFT package: 

– we rely on developers directions to gain the best performance

– The FFT algorithms implemented in the package work with the best accuracy 

and performance if the transform sizes are (in descending order):

1. power of a single factor, if the transform fits in CUDA’s shared memory,

2. power of two, if the transform doesn’t fit in CUDA’s shared memory,

3. power of four or other small primes (such as three, five, or seven).

ARL algorithm using a GPU
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• The execution time is shorter if image sizes are factorizable as of 2a · 3b ·

4c · 5d, longer if they are not.

ARL algorithm using a GPU
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Execution time of ARL algorithm with different image sizes. Those marked

with “*” are factorizable as 2a · 3b · 4c · 5d
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• Slow FFTs  prolong the entire algorithm execution 

• So the parallel ARL on GPU leads to smaller speed-ups if the image sizes 

are not factorizable with primes.

ARL algorithm using a GPU

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland

Speed-up of ARL algorithm. 

Sequential FFT has been implemented utilizing FFTW. Image sizes marked with “*” are 
factorizable as 2a · 3b · 4c · 5d
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How to evaluate the performance

• The CUDA-version algorithm leads clearly to a significant gain in 

comparison with the sequential one 
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How to evaluate the performance

• The CUDA-version algorithm leads clearly to a significant gain in 

comparison with the sequential one 

• But this gain is not easily to explain using the classical parameters for the 

evaluation of parallel algorithms

• So, we notice the need to model the GPUs architectures and their

characteristics to describe the behavior of GPU-algorithms and what we 

can expect of them

• Let’s introduce some results about this focus, following from the 

application we described and some others
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Parallel programming- Preliminaries
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Definition 1:

Given any algorithm A, it may be decomposed into two parts (two sets of 

instructions):

•SeqA , refers to the sequential part of A, made of operations to execute sequentially,

•ParA refers to the parallel part of A, including operations that can be executed 

concurrently.



Parallel programming- Preliminaries
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Definition 2:

Given any algorithm A, and its parallelized version A’

– Tseq (A’) is the time to execute A’ instructions sequentially,

– Tconc (A’, N ) is the time to execute A’ instructions if the parallel part is executed by N 

concurrent streams of execution.

So

Tseq (A’) = Tseq (Seq A’ ) + Tseq (Par A’)

and

Tconc (A’, N ) = Tseq (Seq A’ ) + Tconc (Par A’ , N)



Parallel programming- Preliminaries
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Definition 3:

Let Tseq (A)  be the sequential execution time of a given algorithm A.

It is always decomposable in:

– Tseq[f lop](A), that measures the time spent in floating point operations by A,

– Tseq[mem] (A), that measures the time spent in memory accesses by A.

Thus

Tseq(A) = Tseq[f lop](A) + Tseq[mem]( A)



Parallel programming- Preliminaries
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We can give an analogous definition for Tconc (A’, N ), so it’s also

Tconc (A’, N ) = Tconc[f lop](A’, N) + Tconc[mem](A’, N)

Definition 3:

Let Tseq (A)  be the sequential execution time of a given algorithm A.

It is always decomposable in:

– Tseq[f lop](A), that measures the time spent in floating point operations by A,

– Tseq[mem] (A), that measures the time spent in memory accesses by A.

Thus

Tseq(A) = Tseq[f lop](A) + Tseq[mem]( A)



Let’s now suppose that our GPU-based computing architecture is like the one described in 

[10], made of 

P Multiprocessors (MP), and Q ALU per MP. 

Architecture – functional scheme
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[10][V. Mele, A. Murli, D. Romano, Some remarks on performance evaluation in parallel GPU computing, Preprint del Dipartimento di 

Matematica e applicazioni, Univerity of Naples Federico II, 2011]
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Let’s call warp a group of threads that is the execution unit on that machine, that is the 

fixed number of threads running simultaneously on the ALUs of each MP at the same 

time. 

Architecture – functional scheme
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Let be dimW the dimension of the warp

Architecture – functional scheme
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Architecture – Occupancy
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Suppose that the parallel part of A’, ParA’ ,is executed by p sets of q threads and let q be a 

multiple of dimW.

Definition 4:

At a given instant, the occupancy of each MP is a function of the number of threads 

running concurrently on that MP, say p1 q, with p1 ≤ p, and is defined as 

where

– #threads_per_MP ≤ #max_threads_per_MP is both hardware and p1 q dependent

– #max_warps_per_MP is hardware dependent 

– #threads_per_MP(p1 q)/dimW ≤ #max_warps_per_MP

 
_MP_warps_permax #

ps_MPactive_war#
 

per_MPmax_warps_#

1

dimW

q)r_MP(pthreads_pe#
 q)(p

1
1 =⋅=ϑ
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Definition 4:

At a given instant, the occupancy of each MP is a function of the number of threads 

running concurrently on that MP, say p1 q, with p1 ≤ p, and is defined as 

where

– #threads_per_MP ≤ #max_threads_per_MP is both hardware and p1 q dependent

– #max_warps_per_MP is hardware dependent

– #threads_per_MP(p1 q)/dimW ≤ #max_warps_per_MP

 
_MP_warps_permax #

ps_MPactive_war#
 

per_MPmax_warps_#

1

dimW

q)r_MP(pthreads_pe#
 q)(p

1
1 =⋅=ϑ

Suppose that the parallel part of A’, ParA’ ,is executed by p sets of q threads and let q be a 

multiple of dimW.

• The occupancy describes how much are exploited the capabilities of the 

MPs.



Performance Analysis
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Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a 

single MP of the described architecture by p sets of q threads, could be written as 

follows:

),,'(),,,'(),,,'(
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][][ qpATqpATqpAT

qpATpqAT

Ohmemconcflopconc

concconc
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Where, depending on occupancy

if Tconc[f lop] (warpi , dimW ) is the execution time spent in floating point operations 

by the ith warp, on a single MP,

1
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)dim,(
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1

0
][
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Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a 

single MP of the described architecture by p sets of q threads, could be written as 
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if Tconc[mem] (warpi , dimW ) is the execution time spent in memory accesses by the 

ith warp, on a single MP,
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TOh (p, q) is the overhead that includes cost of kernel 

launch, host/device data transfers, synchronization, 

divergence and data non-coalescence.

Proposition

The expected total execution time of a parallel algorithm A’ designed to run on a 

single MP of the described architecture by p sets of q threads, could be written as 

follows:
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• We described the benefits arising from facing medical imaging problems 

on GPUs, that are non-expensive parallel processing devices available on 

many up-to-date personal computers.
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many up-to-date personal computers.

• We consider the deconvolution of 3D Fluorescence Microscopy images:
– The algorithm reaches a high performance on GPUs because many of the 

steps in the sequential algorithm consist in entry-wise matrix operations, that 

means they are embarrassingly parallel tasks efficiently executable on many-

core GPUs. 

– such operations on big images can keep the GPU well occupied making the 

most of the Streaming Multiprocessor (SM) compute capabilities. 

• We built an efficient implementation with significant speed ups on the 

real case.
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• Obtained results open some considerations about the applicability of 

classical evaluation parameters and leads to the aim of modeling the 

performance of algorithms on the modern GPU-enhanced computing 

environments

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland



• Obtained results open some considerations about the applicability of 

classical evaluation parameters and leads to the aim of modeling the 

performance of algorithms on the modern GPU-enhanced computing 

environments

• We first expressed the execution time of the algorithm in terms of the 

widely used optimization parameter, that is the occupancy.

Conclusions

Valeria Mele PPAM11 - September 11-14, 2011, Torun, Poland



• Obtained results open some considerations about the applicability of 

classical evaluation parameters and leads to the aim of modeling the 

performance of algorithms on the modern GPU-enhanced computing 

environments

• We first expressed the execution time of the algorithm in terms of the 

widely used optimization parameter, that is the occupancy.

• But it’s not the end of the way…

Conclusions
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• We should identify but also well-define some parameters that influence 

the expected speed up and the actual performance

Work in progress
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• We should identify but also well-define some parameters that influence 

the expected speed up and the actual performance

• First of all, the φ(θ(pq)) function has to be characterized

• It is useful to define a kind of ideal Speed up to know what gain to expect 

when programming in a GPU-enabled environment.

• Each found parameter has to be studied with a variety of known 

algorithm and applications field to validate the performance model

• For now…

Work in progress
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Thank you 

For Attention!
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