G e——
” ST o Sl NS
- Y »

y / ._.--""' ," ‘:z:,_—— . :
ST
"4 ":)(;.; '
L A > 5 -
(7 — z

—_ Warsaw, POLAND

1 O th International Conference on
Parallel Processing and Applied Mathematics

Warsaw, Poland
September 8-11, 2013

WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems

The High Performance Internet of Things:
using GVirtus for gluing cloud computing and
ubiquitous connected devices

G. Laccetti®, R.Montella*™

C. Palmieri#*, V. Pelliccia®#*

*Department of Science and Technologies — University of Napoli Parthenope
° Department of Mathematics and Applications — University of Napoli Federico Il

*Developer Team members

Motivations

* This m work is addressed to speculate

about:

’\
o\
— The next generation of ¢ neO\Nu
“off the shelf Beowulf clusters” \ ——

— How to accelerate the Internet of Things component:
High Performance Internet of Things

SEE . e '
cY e

OpenCV __ Opent =] -0

Generic Virtualization Service

(since March 2010)

Framework for split-driver based abstraction
components

Plug-in architecture

Independent from:

— Hypervisor (or no-hypervisor)
— Communication

— Target of virtualization

— Architecture!

High performance:
— Enabling transparent virtualization

— With overall performances better or not too far
from un-virtualized resources

~
(7]
- |
frar)
i
&
~
(7]
)
(®)
Q
o m—
(o]
—
Q.
~
.t
O
Q.
o
c
Q
i -
o
(]
.9
c
=
»
o
S~
by
Q.
fran
o
i o

Generic Virtualization Service

(since March 2010)

* From Google Scholar...

A GPGPU transparent virtualization component for high performance

computing clouds 7\

G Giunta, R Montella, G Agrillo, G Coviello

Euro-FPar 2010-Farallel Processing, 3/9-381 / \

A GPU Accelerated High Performa rv/ ‘frastructure for
Grid Computing Based Virtual \ \

G Giunta, R Montella, G Laccetti.

Virtualizing general punf 06 i Jcamputing:

an application to 2” ”

R Di Lauro, F Gig#®

Parallel and R C\‘e . 2 |EEE 10th .

A general- ,.r‘ﬁn cloud computing: an

application to

R Montella, G Cx #\saila, JG Blas
It

Harallel Process ﬁtics. f40-749

SlaaS-Sensing Ik ..:ﬁa Service Using Cloud Computing to Turn
Physical Instrument iﬂﬁUbiquituus Service

R Ui Lauro, F Lucarelli, R Montella

Parallel and Distributed Processing with Applications (ISPA), 2012 |IEEE 10th ...

~
(7]
- |
frar)
i
&
~
(7]
)
(®)
Q
o m—
(o]
—
Q.
~
.t
O
Q.
o
c
Q
i -
o
(]
.9
c
=
»
o
S~
by
Q.
fran
o
i o

Split-Driver approach

<
(4°)
g Application
* Split-Driver -
« Hardware access by privileged L Wrap library
. @
domain. s :
o i = Frontend driver
* Unprivileged domains access the g
device using a frontend/backend
approach ,
Communicator
* Frontend (FE):
. c
* Guest-side software component. s Backend driver
e Stub: redirect requests to the| 2
backend. 9 Interface library
>
@
'S Device driver
 Backend (BE): £
 Manage device requests. Device
e Device multiplexing.

GVirtuS approach

GVirtu$S Frontend
* Dynamic loadable library
* Same application binary interface
* Run on guest user space

Unpriviledged Domain

=
©
&
o
O
g
)
00
g
@
>
'z
a

Application
Wrap library

Frontend driver

Communicator

Backend driver

Interface library

Device driver

Device

The Communicator

* Provides a high performance communication
between virtual machines and their hosts.

* The choice of the hypervisor deeply affects the
efficiency of the communication.

Guest

Host

Application

-

FrontEnd

|
|
|
: Stub Library :
|
|

~

[BackEnd]

Communicators:

Shared Memory

No hypervisor Unix Sockets Used for testing purposes

[N B B N &N B B B &N B B _§B &N _§B §B §B &8 §®B & & § &N B B &8 &8 & & §N =N B =B B N §®B B =N N B

Generic TCP/IP * Communication testing purposes |

* Remote / Distributed virtualized resources (i.e. GPUs) |

| * High Performance Internet of Things
N N _ N N N _ ¥ 1

Xen XenLoop * runs directly on the top of the hardware through a custom Linux kernel

* provides a communication library between guest and host machines
* implements low latency and wide bandwidth TCP/IP and UDP connections
* app transparent and offers an automatic discovery of the supported VMs

VMware Virtual Machine e commercial hypervisor running at the application level
Communication * provides a datagram API to exchange small messages
Interface (VMCI) * ashared memory API to share data
* an access control APl to control which resources a virtual machine can access
* and a discovery service for publishing and retrieving resources

KVM/QEMU VMchannel * Linux loadable kernel module now embedded as a standard component
* supplies a high performance guest/host communication
* based on a shared memory approach

An application: Virtualizing GPUs

Aatif =

NVIDIA.

RADEDON

¢ GPUS GRAPHICS

— Hypervisor independent

— Communicator independent
— GPU independent

The host plus a collection of devices managed by the OpenCL
framework that allow an application to share resources and
execute kernels on devices in the platform.

GVirtu$S - libOpenCL.so

Guest Machine

#include <stdio.h>

#include <cL/c1.h>

int main(void) {
cl_int error, platforms;
cl_platform_id platform ;
error=clGetPlatformiDs(1l, &platform, &platforms

\

Host Machine

GVirtuS Backend

5
printf("Number of platforms GPU(s): %d\n",
platforms); P
return 0;
} GVirtuS F end

(N

<

extern "C" CL_API_ENTRY cl_int CL_API_CAL
clGetPlatformIDs (cl_uint num_entries,
cl_platform_id *
cl_uint *nu
openclFrontend: :Prepare();
OopenclFrontend: :
AddvariableForArguments (num_entries);
openclFrontend: :AddvariableForArguments (platforms);
openclFrontend: :AddvariableForArguments (num_pla

orms);
openclFrontend:: Execute("clGetPlatformIDs");
if(openclFrontend:: Success()){

cl_uint *tmp_num_platform;

cl_platform_id *tmp_platform;

tmp_num_platform =
openclFrontend: :GetOutputHostPointer<cl_uint>(Q);

if (tmp_num_platform != NULL)

*num_platforms= *tmp_num_platform;

tmp_platform=
(openclFrontend: :GetoutputHostPointer<cl_platform_id
>0));
if (tmp_platform !=NULL)

*platforms=*tmp_platform; }

Process Handler

w /

N\

OPENCL_ROUTINE_HANDLER(GetPlatformIDs) {

cl_int num_entries = input_buffer->Get<cl_int>Q;
cl_platform_id *platforms=

input_buffer->Assign<cl_platform_id>(Q);

cl_uint *num_platforms =

input_buffer->Assign<cl_uint> (;

cl_uint exit_code =

clGetPlatformIDs (num_entries, platforms,
num_platforms);

()

Buffer *out = new Buffer();
out->Add(num_platforms) ;
out->Add(platforms);

return new Result(exit_code, out);

* High Performance
Computing will be ARM
based

— Cheaper and powerful
— Low heat emission
— High developable

* High Performance Internet
of Things

— Small and smart devices
highly pervasive

ARDUINO

Figuring out the next generation HPC

* x86 64
— Head node
— Login nodes

— 1/O nodes

* Computing nodes for the
cluster

* |/O nodes for sub clusters

* ARM:

— Computing nodes as
multicore sub clusters

Enhancing the next generation of
[low cost/middle end] HPC

GPU: : Head node Login node
— Acceleration nodes
|

* High End GPGPU devices
— Nvidia
* Tesla
* Fermi
* Kepler
— ATl Radeon

Distributed GPUs

Highlights:

Using the Tcp/Ip
Communicator FE/BE could
be on different machines.

ARM machines can access
remote GPUs.

Applications:

GPU for embedded systems
as network machines

Next generation of High
Performance [Cloud]
Computing

Sub-cluster network

ARI1
Linux Board

Al M
Linux Board

Accelerator nodes network
I/O nodes network

tep/ip?
ANIN) §) Security?
: : i : Compression?

Accelerator Node
NVIDIA.

Driver

AMD

Driver

/O Node

e RS R Y

http://www.nvidia.com/page/home.html

Prototyping

 Computing node:
— Raspberry Pi mod. B. rev. 2
— Wheezy Raspbian Linux

e Acceleration:
— Genesis GE-i940 Tesla

— i7-940 2,93 133 GHz fsb, Quad Core hyper-
threaded 8 Mb cache CPU and 12Gb RAM.

— 1 nVIDIA Quadro FX5800 4Gb RAM video card
— 2 nVIDIA Tesla C1060 4 Gb RAM

 |/O:
- I ntel XeO n Processor 1 x Tesla T10
q ua d core HT Number of cores 240
. . Core Clock 1.33 GHz
— Ubuntu Linux 64bit opboarsmemory 4068

Memory bandwidth 102 GB/sec peak

Memory 1/0 §12-bit, 800MHz GDDR3

Full ATX: 4.736" (H) x 10.5”
Form factor L)
Dual slot wide

System I/O PCle x16 Gen2

Typical power 160 W

* Single computing node

it g

- PR
LS

..from (NVIDIA) OpenCL SDK...

ScalarProd computes k scalar products of two
real vectors of length m.

— Notice that each product is executed by an
OpenCL thread on the GPU.

— No synchronization is required.

MatrixMul computes a matrix multiplication.
— The matrices are mxn and nxp, respectively.

— It partitions the input matrices in blocks and
associates an OpenCL thread to each block.

— No need of synchronization.

Histogram returns the histogram of a set of m B
uniformly distributed real random numbers in .F g i
64 bins.

— The set is distributed among the OpenCL threads A
each computing a local histogram. %1 [|te——|O)
— The final result is obtained through 1 |0
synchronization and reduction techniques. — - -

Benchmarking:

1.0GE+C

$.00E<00

£.00e-00

MatrixMul

F.00E=00

&.00E=00

L.00E-00

Wall Clock (s)

4.00E«00
ScalarProd

3.00E=00

2.00e=00

1.00E=00

Q.00e=00

1/64 172 1 i 4 B 16 32]
Problem Size (MB)

Benchmarking: GPU!

Wall Clock (s)

1.00€

8.00E

&.00E

4.00E

2.00E

-03

-04

-0

-04

-04

Q.00E =

aa

—

1/64

1/2

ARM11 OpenCL gVirtuS x86_64 NvidiaTesla

10,10° (CPU) mp 103,10 (GPU) |
MatrixMul (computing + communication) e

Histogram

ScalarProd

Problem Size (MB)

Conclusions and Future Works

Jack Dongarra
Warsaw, 2013 -9/9th Orm

e 2 .
teroge buvldlng exascale

Neous or homogeneo

C r~

same

The p
machines

N
Vlore evaluation

 Multiple computing nodes

vvvvvv

Conclusions and Future Works

. Repeat testing on better ARM
board(s) i.e.
— Quad Core CPU 1.2 GHz Ra S p D ev

— 1 GB RAM
— Giga Ethernet http://web.uniparthenope.it/raspdev/
< ; 4

* Full OpenCL porting

I= Rospdey Virtual Device Manage = I:l l
Raspdev Virtual Device Managel
Parthenope University of Naples Project

e Application framework for the
ARM “sub cluster” support

Targt SO Car
b =

 Development of a comfortable
SDK for hybrid programming

GVirtusS is GPL3 licensed open source! Download it at http://osl.uniparthenope.it/projects/gvirtus/

WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems

Thank Youl

