
The High Performance Internet of Things:
using GVirtuS for gluing cloud computing and

ubiquitous connected devices

G. Laccetti°, R.Montella*

*Department of Science and Technologies – University of Napoli Parthenope
° Department of Mathematics and Applications – University of Napoli Federico II

C. Palmieri#*, V. Pelliccia#*

WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems

#Developer Team members

Motivations

• This preliminary work is addressed to speculate
about:

– The next generation of
“off the shelf Beowulf clusters”

– How to accelerate the Internet of Things component:
High Performance Internet of Things

Generic Virtualization Service

• Framework for split-driver based abstraction
components

• Plug-in architecture

• Independent from:
– Hypervisor (or no-hypervisor)
– Communication
– Target of virtualization
– Architecture!

• High performance:
– Enabling transparent virtualization
– With overall performances better or not too far

from un-virtualized resources

G
V

ir
tu

S
h

tt
p

:/
/o

sl
.u

n
ip

ar
th

en
o

p
e.

it
/p

ro
je

ct
s/

gv
ir

tu
s/

(since March 2010)

Generic Virtualization Service

• From Google Scholar…

G
V

ir
tu

S
h

tt
p

:/
/o

sl
.u

n
ip

ar
th

en
o

p
e.

it
/p

ro
je

ct
s/

gv
ir

tu
s/

(since March 2010)

Split-Driver approach

• Split-Driver
• Hardware access by privileged

domain.
• Unprivileged domains access the

device using a frontend/backend
approach

• Frontend (FE):
• Guest-side software component.
• Stub: redirect requests to the

backend.

• Backend (BE):
• Manage device requests.
• Device multiplexing.

5

Application

Wrap library

Frontend driver

Backend driver

Interface library

Device driver

Device

Communicator

U
n

p
ri

vi
le

d
ge

d
 D

o
m

ai
n

P

ri
vi

le
d

ge
d

 D
o

m
ai

n

R
e

q
u

e
st

s

GVirtuS approach

• GVirtuS Backend
• Server application
• Run in host user space
• Concurrent requests

6

Application

Wrap library

Frontend driver

Backend driver

Interface library

Device driver

Device

Communicator

U
n

p
ri

vi
le

d
ge

d
 D

o
m

ai
n

P

ri
vi

le
d

ge
d

 D
o

m
ai

n

R
e

q
u

e
st

s

• GVirtuS Frontend
• Dynamic loadable library
• Same application binary interface
• Run on guest user space

The Communicator
• Provides a high performance communication

between virtual machines and their hosts.

• The choice of the hypervisor deeply affects the
efficiency of the communication.

Hypervisor FE/BE comm Notes

No hypervisor Unix Sockets Used for testing purposes

Generic TCP/IP • Communication testing purposes
• Remote / Distributed virtualized resources (i.e. GPUs)
• High Performance Internet of Things

Xen XenLoop • runs directly on the top of the hardware through a custom Linux kernel
• provides a communication library between guest and host machines
• implements low latency and wide bandwidth TCP/IP and UDP connections
• app transparent and offers an automatic discovery of the supported VMs

VMware Virtual Machine
Communication
Interface (VMCI)

• commercial hypervisor running at the application level
• provides a datagram API to exchange small messages
• a shared memory API to share data
• an access control API to control which resources a virtual machine can access
• and a discovery service for publishing and retrieving resources

KVM/QEMU VMchannel • Linux loadable kernel module now embedded as a standard component
• supplies a high performance guest/host communication
• based on a shared memory approach

Guest Host

Application

Stub Library

FrontEnd BackEnd

Communicators:

TCP/IP
Shared Memory

…

An application: Virtualizing GPUs

• GPUs

– Hypervisor independent

– Communicator independent

– GPU independent

The host plus a collection of devices managed by the OpenCL
framework that allow an application to share resources and

execute kernels on devices in the platform.

GVirtuS – libOpenCL.so

#include <stdio.h>
#include <CL/cl.h>
int main(void) {
 cl_int error, platforms;
 cl_platform_id platform ;
 error=clGetPlatformIDs(1, &platform, &platforms
);
 printf("Number of platforms GPU(s): %d\n",
platforms);
 return 0;
}

Guest Machine Host Machine

extern "C" CL_API_ENTRY cl_int CL_API_CALL
clGetPlatformIDs(cl_uint num_entries,
 cl_platform_id *platforms,
 cl_uint *num_platforms){
 OpenclFrontend::Prepare();
 OpenclFrontend::
 AddVariableForArguments(num_entries);
 OpenclFrontend::AddVariableForArguments(platforms);
 OpenclFrontend::AddVariableForArguments(num_platf
orms);
OpenclFrontend:: Execute("clGetPlatformIDs");
if(OpenclFrontend:: Success()){
 cl_uint *tmp_num_platform;
 cl_platform_id *tmp_platform;
 tmp_num_platform =
OpenclFrontend::GetOutputHostPointer<cl_uint>();
 if (tmp_num_platform != NULL)
 *num_platforms= *tmp_num_platform;
 tmp_platform=
(OpenclFrontend::GetOutputHostPointer<cl_platform_id
>());
if (tmp_platform !=NULL)
 *platforms=*tmp_platform; }

GVirtuS Frontend

GVirtuS Backend

OPENCL_ROUTINE_HANDLER(GetPlatformIDs) {
 cl_int num_entries = input_buffer->Get<cl_int>();
 cl_platform_id *platforms=
input_buffer->Assign<cl_platform_id>();
 cl_uint *num_platforms =
input_buffer->Assign<cl_uint> ();
 cl_uint exit_code =
clGetPlatformIDs(num_entries, platforms,
num_platforms);
 Buffer *out = new Buffer();
 out->Add(num_platforms);
 out->Add(platforms);
 return new Result(exit_code, out);
}

Process Handler

11

• High Performance
Computing will be ARM
based
– Cheaper and powerful

– Low heat emission

– High developable

• High Performance Internet
of Things
– Small and smart devices

highly pervasive

Accelerating ARM boards

Figuring out the next generation HPC

• x86_64:
– Head node
– Login nodes

– I/O nodes

• Computing nodes for the
cluster

• I/O nodes for sub clusters

• ARM:
– Computing nodes as

multicore sub clusters

Head node Login node

Storage Switch

I/O Node I/O Node

Switch Switch

CN CN

CN CN

CN CN

CN CN

CN CN

CN CN

CN CN

CN CN

Enhancing the next generation of
[low cost/middle end] HPC

• GPU:
– Acceleration nodes

• High End GPGPU devices
– Nvidia

• Tesla
• Fermi
• Kepler

– ATI Radeon

• Hierarchical parallelism:

– DM among I/O Nodes
– SM in I/O Nodes
– DM among sub clusters nodes
– SM in sub cluster CN(multicore ARMs)
– OpenCL Kernels (in CN/Acc Nodes)

Head node Login node

Storage Switch

I/O Node I/O Node

Switch Switch

CN CN

CN CN

CN CN

CN CN

CN CN

CN CN

CN CN

CN CN

Acc Node Acc Node

NB: In this scenario we have ARM boards with a low performance GPU useless for HPC jobs

Distributed GPUs
Highlights:

• Using the Tcp/Ip
Communicator FE/BE could
be on different machines.

• ARM machines can access
remote GPUs.

Applications:

• GPU for embedded systems
as network machines

• Next generation of High
Performance [Cloud]
Computing

OpenCL
Application

Frontend

ARM
Linux Board

I/O Node

OpenCL
Application

Frontend

ARM
Linux Board

Accelerator Node

Backend

…
Sub-cluster network

Accelerator nodes network

I/O nodes network

tcp/ip?
Security?
Compression?

Driver

Driver

X86-64

X86-64

http://www.nvidia.com/page/home.html

Prototyping
• Computing node:

– Raspberry Pi mod. B. rev. 2
– Wheezy Raspbian Linux

• Acceleration:
– Genesis GE-i940 Tesla

– i7-940 2,93 133 GHz fsb, Quad Core hyper-
threaded 8 Mb cache CPU and 12Gb RAM.

– 1 nVIDIA Quadro FX5800 4Gb RAM video card

– 2 nVIDIA Tesla C1060 4 Gb RAM

• I/O:
– Intel Xeon

quad core HT
– Ubuntu Linux 64bit

Evaluation

• Single computing node

…from (NVIDIA) OpenCL SDK…

• ScalarProd computes k scalar products of two
real vectors of length m.
– Notice that each product is executed by an

OpenCL thread on the GPU.
– No synchronization is required.

• MatrixMul computes a matrix multiplication.

– The matrices are mxn and nxp, respectively.
– It partitions the input matrices in blocks and

associates an OpenCL thread to each block.
– No need of synchronization.

• Histogram returns the histogram of a set of m

uniformly distributed real random numbers in
64 bins.
– The set is distributed among the OpenCL threads

each computing a local histogram.
– The final result is obtained through

synchronization and reduction techniques.

Benchmarking: ARM11!

Problem Size (MB)

W
al

l C
lo

ck
 (

s)

MatrixMul

ScalarProd

Histogram

Benchmarking: GPU!

Problem Size (MB)

W
al

l C
lo

ck
 (

s)

MatrixMul

ScalarProd

Histogram

ARM11 OpenCL gVirtuS x86_64 NvidiaTesla

101,100 (CPU) 10-3,10-4 (GPU)
(computing + communication) !

Conclusions and Future Works

• A subset of OpenCL has been ported under ARM platform
as GVirtuS stub library

• Tests and benchmarks demonstrate the performance
improvements

 LESSONS LEARNT:
• Technically, accelerate an ARM powered board using OpenCL is possible:

• In a fully transparent way
• Using hybrid environment ARM/x86-64/GPU/Acc (i.e. Xeon Phi)

• Pervasive/wearable computers and “things” over the internet could be accelerated in the

same way

• The pervasive/wearable computers and “things” could be instanced as cloud “virtual”
machines

Jack Dongarra
Warsaw, 2013 – 9/9th

Conclusions and Future Works

• More evaluation

• Multiple computing nodes

Conclusions and Future Works

• Repeat testing on better ARM
board(s) i.e.
– Quad Core CPU 1.2 GHz
– 1 GB RAM
– Giga Ethernet

• Full OpenCL porting

• Application framework for the

ARM “sub cluster” support

• Development of a comfortable
SDK for hybrid programming

http://web.uniparthenope.it/raspdev/

GVirtuS is GPL3 licensed open source! Download it at http://osl.uniparthenope.it/projects/gvirtus/

Thank You!

G
V

ir
tu

S

WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems

