
Improving Parallel I/O Performance

Using Multithreaded Two-Phase I/O

with Processor Affinity Management
 *

Yuichi Tsujita1,4, Kazumi Yoshinaga1,4, Atsushi Hori1,4,

Mikiko Sato2,4, Mitaro Namiki2,4, Yutaka Ishikawa3

1 RIKEN Advanced Institute for Computational Science (AICS)

2 Tokyo University of Agriculture and Technology

3 The University of Tokyo

4 JST CREST

* This research work was partially supported by JST CREST

MAMHIP13 @ PPAM 2013, September 9, 2013 1

Outline

1. Motivation

2. MPI-IO

3. HDF5

4. Two-Phase I/O

5. Multithreaded Two-Phase I/O

6. CPU Core Affinity Management in Multithreaded

Two-Phase I/O

7. Performance Evaluation for Parallel HDF5

8. Related Work

9. Concluding Remarks

MAMHIP13 @ PPAM 2013, September 9, 2013 2

Motivation (1)

● Increase in data size due to recent huge scale of parallel

computation

● MPI-IO: Parallel I/O APIs in the MPI standard (MPI-2)

● ROMIO: One of the widely used MPI-IO implementations

● Variety of I/O access patterns

● Non-contiguous I/O: One of the performance bottlenecks

● Two-Phase I/O in ROMIO
Improvement in throughput for non-contiguous accesses in parallel I/O

Limitation in performance improvement

MAMHIP13 @ PPAM 2013, September 9, 2013 3

Performance improvement

Parallel I/O

There is room to improve I/O throughput.

x

Motivation (2)

 Our proposal

● Multithreaded Two-Phase I/O by using a Pthreads library

● Overlapping file I/O with data communications

● CPU core management for threads

● MPI-IO layer

● Performance improvements

● Minimization in memory footprints

● Parallel HDF5 layer

● Further performance improvements

MAMHIP13 @ PPAM 2013, September 9, 2013 4

Evaluation of parallel HDF5
as an application example

MPI-IO (1)

MPI-IO

I/O interface in the MPI standard (MPI-2)

Provides various kinds of I/O interfaces including parallel I/O

ROMIO

An MPI-IO implementation in MPICH

 Incorporated in other MPI implementations such as OpenMPI

Supports many parallel file systems such as Lustre or PVFS2 through an

ADIO interface layer

MAMHIP13 @ PPAM 2013, September 9, 2013 5

MPI-IO (2)

Collective I/O

MAMHIP13 @ PPAM 2013, September 9, 2013 6

Parallel file system (e.g., Lustre, PVFS2, …)

MPI_COMM_WORLD

MPI_COMM_WORLD

read, or

MPI_File_read

MPI_File_read_all

a. Independent I/O
• Large overhead in data communications
• Bottleneck in the representative process

to perform local I/O

b. Collective I/O
• High throughput by using parallel I/O
• Suitable for parallel file systems such as

Lustre

Data transfer

MPI-IO (3)

Software stack of ROMIO

ROMIO

Parallel I/O
in upper layer

ADIO

Implementation
target

MAMHIP13 @ PPAM 2013, September 9, 2013 7

HDF5

Hierarchical Data Format 5 (HDF5)

Developed by the HDF Group (http://www.hdfgroup.org/)

Hierarchical and self-describing data format

HDF5 file organization

HDF5 group : a grouping structure containing HDF5 objects

HDF5 dataset : A multidimensional array of data elements

Parallel I/O part (parallel HDF5)

 realized by using MPI-IO interface APIs

PPAM 2013, September 9, 2013 8

 MPI-IO functions (independent, collective)

 MPI functions to generate derived data types, and so forth

Collective I/O for derived data type access patterns plays a big role

to manage data-intensive scientific applications.

Two-Phase I/O (1)

MAMHIP13 @ PPAM 2013, September 9, 2013 9

Non-contiguous
accesses in
every process

Two-Phase I/O improves collective I/O throughput in non-contiguous accesses.

Two-Phase I/O (2)
● Two-Phase I/O

 File accesses

 Data exchanges

● Collective read accesses
1. Total file region is evenly

divided between MPI

processes which play I/O

(I/O aggregator).

2. Read from an assigned

partial file region to a

temporary buffer named

collective buffer (CB)

3. Data communications to

collect target data

MAMHIP13 @ PPAM 2013, September 9, 2013 10

Two-Phase I/O optimization

Performance degradation by large number
of Independent small I/O accesses

Optimization

CB

* Collective write accesses are
inversely operated.

Two-Phase I/O (3)

● TP-I/O cycles
● One I/O access is aligned to CB size.

● Multiple accesses (TP-I/O cycles)

– 1 cycle consisting file I/O and data

communications is repeated

– TP-IO cycles are repeated until whole

data region is accessed.

 We still have room to overlap file I/O

phases with data communication

phases.

MAMHIP13 @ PPAM 2013, September 9, 2013 11

< Task flow in the case of two-cycles >

1 2 2 1

i-th cycle request
Time

Read i

Exchange i

< Two-Phase I/O flow in each MPI process >

Serialized operations !

Multithreaded Two-Phase I/O (1)

 Pipelined operations
● Overlap of data exchange with file I/O

● Increase in the number of cycles leads to

higher overlap ratio between data

exchange and file I/O.

– Minimization of total utilized memory size

 Two proposed Implementations

1. Multithreaded implementation using a

Pthreads library

2. Asynchronous I/O API

MAMHIP13 @ PPAM 2013, September 9, 2013 12

Original Two-Phase I/O

Overlapping

Pipelined Two-Phase I/O

 Available on many platforms
 Portable API

Multithreaded Two-Phase I/O (2)

Read queue

Exchange
queue

<I/O thread> <Main thread>

I/O
request

(1)

Read

(2)

Data

exchange
Data exchange

with other
processes

● Overlapping strategy
● Main thread： Data exchanges

● I/O thread： File I/O

● Synchronization by using shared queues (read and exchange queues)

● Further optimization
● Multiple I/O requests in shared queues

● The number of slots can be managed by MPI_Info_set with a key-value pair.

MAMHIP13 @ PPAM 2013, September 9, 2013 13

pthread_create()

Read

(1)

Read

(2)

Read

(3)

Read

(4)

Read

(5)

Read

(6)

Read

(7)

Read

(8)

Exch.

(5)

Exch.

(1)

Exch.

(2)

Exch.

(3)
Exch.

(4)

Exch.

(6)

Exch.

(7)

Exch.

(8)

Multithreaded Two-Phase I/O (3)

Two-Phase I/O flow in collective read operations

MAMHIP13 @ PPAM 2013, September 9, 2013 14

main
thread

I/O
thread

Exch.

(N)

Read

(N)

Overlapping between read and data exchange phases

 Exch. : Data exchange phase

 Read: File read phase

CPU Core Affinity Management in Multithreaded Two-Phase I/O

Prevention of race condition between threads

Management by using pthread_attr_setaffinity_np()

Core management via MPI_Info object

MAMHIP13 @ PPAM 2013, September 9, 2013 15

0 1

2 3

Socket
#1

Socket
#2

Socket
#3

Socket #0

Hyper-
Transport

pthread_create()

To/From
Host bridge

I/O thread

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Socket #1

Socket #2 Socket #3

Socket #0

Hyper-
Transport

pthread_create()

To/From
Host bridge

I/O thread

Main thread Main thread

main thread: Core-0
I/O thread : Core-3 (scheduler dependent)

main thread: Core-0
I/O thread : Core-15

Race condition in the same CPU socket
Prevention of race condition by deploying

threads on different CPU sockets

pthread_attr_setaffinity_np()

Performance Evaluation (1)

Evaluation on T2K Open Supercomputer (T2K-Toudai)

MAMHIP13 @ PPAM 2013, September 9, 2013 16

CPU 4 x AMD Opteron (Barcelona, 2.3 GHz, 4 cores)

Memory 32 GiB (4 x 8 GiB)

Interconnect Myrinet 10Gbps (IP over Myrinet)

OS Linux kernel 2.6.18-53 with glibc version 2.5

MPI library MPICH2 ver.1.4.1 with our implementation

HDF5 library HDF5 version 1.8.10

Parallel file system Lustre ver. 1.8.1 (1 MDS, 4 OSTs)

Specifications of a PC node of the T2K-Toudai (Special node group: 32 nodes in total)

 I/O performance evaluation by using a simple parallel HDF5 test code in an HDF5

source code distribution with our some modifications
 Due to some unsupported HDF5 APIs in the newest IOR benchmark, we gave up to

use the IOR.

 Thread deployment on CPU cores
 CPU core management by using MPI_Info_set() in the HDF5 test program with some

key-value pairs

 Eliminating file cache effect by remounting the Lustre file system prior to every I/O

operation run

 io_time = MPI_Wtime();

 ret = H5Dread(dataset1, H5T_NATIVE_INT,
 mem_dataspace, file_dataspace,
 xfer_plist, &(data_array1[0][0]));

 io_time = MPI_Wtime() - io_time;
 ...
 H5Sclose(file_dataspace);
 H5Sclose(mem_dataspace);
 H5Pclose(xfer_plist);
 H5Dclose(dataset1);
 …

Measurement of collective read operations
for a target dataset

Performance Evaluation (2)
HDF5 test program (pseudo code)

 About 2.2 GiB data set was read in collective manner.

 2-dimentional data : 24,320 x 24,320 with integer data type

 32 MPI processes (1 process/node)

 …
 dataset1 = H5Dopen2(fid1, “Data1”,
 H5P_DEFAULT);
 ...
 file_dataspace = H5Dget_space(dataset1);
 ...
 ret = H5Sselect_hyperslab(file_dataspace, ...);
 ...
 mem_dataspace = H5Screate_simple(...);
 …
 xfer_plist = H5Pcreate(H5P_DATASET_XFER);
 ...
 ret = H5Pset_dxpl_mpio(xfer_plist,
 H5FD_MPIO_COLLECTIVE);
 ...

Preparation of collective read operations

MAMHIP13 @ PPAM 2013, September 9, 2013 17

Performance Evaluation (3)

(a) without core management (b) core management, main:0, I/O:1

(c) core management, main:0, I/O:15 (d) core management, main:15, I/O:0

MAMHIP13 @ PPAM 2013, September 9, 2013 18

 I/O times in collective read by using PHDF5 (32 MPI processes)

• An increase in the number of I/O requests led to performance
improvements in every case.

• Up to 7% minimization was achieved relative to the original TP-IO.
• Only the case (c) minimized up to 8% relative to the case (a) in each.
• I/O times in the cases (b) and (d) were longer than the original case (a).

G
o

o
d

ior-2 and ior-4 were
better than the
original.

Performance Evaluation (4)

Analysis of internal operation times of Two-Phase I/O

TP-IO for collective read consists of

1. Contiguous read operations

2. Data exchanges

Time measurement for each operations

read and data exchanges

Calculation of I/O times by using the measured internal times

Comparison with the measured times to examine overlapping effects and so

forth.

MAMHIP13 @ PPAM 2013, September 9, 2013 19

dataCBreadcommdataCBreadcomm SSttSStt /)()/1(),max(













data

CB

read

comm

S

S

t

t : mean communication time

: mean read time

: CB size

: Size of accessed region per process

In order to examine what was going on

inside the TP-IO

Read

(1)

Read

(2)

Read

(3)

Read

(4)

Read

(5)

Read

(6)

Read

(7)

Read

(8)

Exch.

(5)

Exch.

(1)

Exch.

(2)

Exch.

(3)
Exch.

(4)

Exch.

(6)

Exch.

(7)

Exch.

(8)

Performance Evaluation (5)

I/O time calculation model

MAMHIP13 @ PPAM 2013, September 9, 2013 20

main
thread

I/O
thread

Operation flow in 4 I/O requests case

Exch.

(N)

Read

(N)

𝒕𝒄𝒐𝒎𝒎

𝒕𝒓𝒆𝒂𝒅

Exchange time / cycle :

Read time /cycle :)//(CBdataread SSt

)//(CBdatacomm SSt

dataCBreadcommdataCBcommread

CBdatacommCBdatacommCBdatareadCBdataCBdataread

SSttSStt

SStSStSStSSSSt

/)()/1(),max(

//)//,//max()1/()//(





1/ CBdata SS Cycles

G
o

o
d

Performance Evaluation (6)
Analysis of internal operations in TP-IO with CPU core affinity

(a) 2 I/O requests (main:0, I/O:1) (b) 4 I/O requests (main:0, I/O:1)

(c) 2 I/O requests (main:0, I/O:15) (d) 4 I/O requests (main:0, I/O:15)

PPAM 2013, September 9, 2013 21

• Calculated I/O times in the cases (c) and (d) were shorter than those in
the cases (a) and (b), respectively.

• CPU core management had an impact in I/O performance improvements.

Related Work

P. Dickens and R.Thakur, “Improving Collective I/O Performance Using Threads,”

Proc. of 13th International Parallel Processing Symposium and 10th Symposium

on Parallel and Distributed Processing, pp.38-45 (1999)

X. Ma et al., “Improving MPI-IO Output Performance with Active Buffering Plus

Threads,” Proc. of IPDPS’03 (2003)

 Both works showed excellent overlapping by using multithreaded scheme, however

they overlapped computations with file I/O.

While our approach is addressing to overlap Two-Phase I/O operations.

J.G. Blas et al, “View-Based Collective I/O for MPI-IO”,Proc. of CCGRID2008, pp.

409-416 (2008)

Optimization of the TP-IO by eliminating extra communication cost which generates file

and memory access patterns on demand

MAMHIP13 @ PPAM 2013, September 9, 2013 22

Related Work (cont’d)

J.G. Blas et al, “Implementation and Evaluation of File Write-Back and

Prefetching for MPI-IO over GPFS”, IJHPCA, Vol. 24, pp.78-92 (2010)

GPFS is used to have background writing and read-ahead operations to overlap with

data exchanges.

Multithread scheme is used, however this work is dependent on GPFS.

 J.P. Prost et al., “MPI-IO/GPFS, An Optimized Implementation of MPI-IO on Top

of GPFS,” Proc. of SC2001, p. 58 (2001)

Overlapping of I/O operations with data exchanges is realized by using double buffering

scheme.

Our proposal is similar to this work, however this idea is tightly coupled with GPFS

functions, while our proposal is independent of underlying file system at least a

Pthreads library is available.

MAMHIP13 @ PPAM 2013, September 9, 2013 23

Concluding Remarks

● Proposal of CPU core affinity management scheme in multithreaded TP-IO
● CPU core affinity management in multithreaded operations

● Prevention of race condition on the same CPU

● Performance evaluation
● Good performance improvements

● Internal file read and communication times were minimized by deploying an I/O

thread on a different CPU, being apart from CPU where a main thread was working.

● 7% improvements relative to the original TP-IO

● 8% improvements relative to the multithreaded TP-IO without CPU core affinity

management

● Future work

● Collective write implementation

● Further examinations about resource utilization by monitoring some system

specific resources such as CPU and I/O systems

● Utilization of an affinity management library such as hwloc or likwid

MAMHIP13 @ PPAM 2013, September 9, 2013 24

