MAMHIP13 @ PPAM 2013, September 9, 2013 1

Improving Parallel 1/O0 Performance
Using Multithreaded Two-Phase 1/0
with Processor Affinity Management*

Yuichi Tsujital#, Kazumi Yoshinagal#, Atsushi Hori14,
Mikiko Sato?4, Mitaro Namiki24, Yutaka Ishikawa?

1 RIKEN Advanced Institute for Computational Science (AICS)
2 Tokyo University of Agriculture and Technology

3 The University of Tokyo

4 JST CREST

* This research work was partially supported by JST CREST

~

o 0k W DN PF

MAMHIP13 @ PPAM 2013, September 9, 2013

Outline

Motivation

MPI-10

HDF5

Two-Phase 1/O
Multithreaded Two-Phase 1/O

CPU Core Affinity Management in Multithreaded
Two-Phase 1/O

Performance Evaluation for Parallel HDF5
Related Work
Concluding Remarks

MAMHIP13 @ PPAM 2013, September 9, 2013 3

Motivation (1)

. Increase in data size due to recent huge scale of parallel
computation
l Parallel I/0

. MPI-IO: Parallel I/0O APIs in the MPI standard (MPI-2)
ROMIO: One of the widely used MPI-1O implementations

. Variety of I1/O access patterns
Non-contiguous I/O: One of the performance bottlenecks

‘ Performance improvement

. Two-Phase I/O in ROMIO
O Improvement in throughput for non-contiguous accesses in parallel 1/0

X Limitation in performance improvement

There is room to improve 1/O throughput.

MAMHIP13 @ PPAM 2013, September 9, 2013

Motivation (2)
« Our proposal

. Multithreaded Two-Phase /O by using a Pthreads library
. Overlapping file 1/O with data communications

. CPU core management for threads

. MPI-IO layer

. Performance improvements

. Minimization in memory footprints

. Parallel HDF5 layer _
Evaluation of parallel HDF5

. Further performance improvements as an application example

MAMHIP13 @ PPAM 2013, September 9, 2013

MPI-1O (1)

e MPI-1O
e /O interface in the MPI standard (MPI-2)
® Provides various kinds of I/O interfaces including parallel I/O

oeROMIO

e An MPI-IO implementation in MPICH
® Incorporated in other MPI implementations such as OpenMPI

® Supports many parallel file systems such as Lustre or PVFS2 through an
ADIO interface layer

MAMHIP13 @ PPAM 2013, September 9, 2013

MPI-IO (2)

/ MPI_COMM_WORLD \
2 0

1 1 | I | | I |
MPI_COMM_WORLD MPI_File_read_all

e Collective I/O

/

Data transfer

read, or

MPI_File_read

Ef

Parallel file system (e.g., Lustre, PVFS2, .

a. Independent /O b. Collective I/O
e Large overhead in data communications * High throughput by using parallel I/0
* Bottleneck in the representative process \' Suitable for parallel file systems suy

to perform local 1I/0 Lustre

MPI-IO (3)

e Software stack of ROMIO

Parallel 1/0
nuoper layer| PHDFS (parallel /0 of HDFS5)

—

r

MPI-I0 (ROMIQ)

- ADIO

<

Implementation
target

| P |

|

|

l

|
ROMIO -=2

|

|

|

|

l~

HDF5

eHierarchical Data Format 5 (HDF5)

® Developed by the HDF Group (http://www.hdfgroup.org/)

e Hierarchical and self-describing data format

e HDF5 file organization
® HDF5 group : a grouping structure containing HDF5 objects
® HDF5 dataset : A multidimensional array of data elements

e Parallel I/O part (parallel HDF5)
® realized by using MPI-10 interface APIs

» MPI-10 functions (independent, collective)
» MPI functions to generate derived data types, and so forth

Collective I/O for derived data type access patterns plays a big role
to manage data-intensive scientific applications.

MAMHIP13 @ PPAM 2013, September 9, 2013

Two-Phase I/O (1)

> afylix] »

a[0][0] |a[0][1]ja[0][2]|a[0][3]

PO | P1
a[1][o]|a[1][1]jal1][2] |a[1][3]
i P2 | p3 i a[2][0](a[2][1]|al2][2] |a[2][3]
y y

ai3lolja3]1]jal3l2] jal31i3]

Decomposition for 2-D e.g., decomposition into four

data file image regions Non-contiguous
(4 processes) accesses in

every process

P P1
a[0][0]|a[0][1]|a[0][2]|a[0][3]

P1
a[1li2]ja[1[3]

a[1]i0]ja[1][1]

P2
a[2][0]{a[2][1]

P3
a[2][2][al2][3]

P2
a[3][0]a[3][1]

P3
a[3][2]|al3][3]

Real data access pattern on a target file
(row-order)

‘ Two-Phase I/O improves collective I/O throughput in non-contiguous accesses.

MAMHIP13 @ PPAM 2013, September 9, 2013

Two-Phase I/O (2)

Two-Phase 1/O

-~ File accesses
» Data exchanges

Collective read accesses
1. Total file region is evenly
divided between MPI
processes which play 1/0
(I/O aggregator).

2. Read from an assigned
partial file region to a
temporary buffer named
collective buffer (CB)

3. Data communications to
collect target data

* Collective write accesses are
inversely operated.

Process O's request
File = = ssssssssssssm Process 1's request

} . } : | b T J

User's buffer User's buffer
on Process 0 on Process 1

Performance degradation by large number
of Independent small I/O accesses

@ Optimization

File

] 1 | 1] | I | 1 |
~ ~ P | -
/l | ~ | ~>< -
~ - -~ _ -
| communication ~— > |
— ~
|
| PR | a Sa Sa
1 | } | I - } | } i

User's buffer User's buffer
on Process 0 on Process 1

Two-Phase 1/0O optimization

MAMHIP13 @ PPAM 2013, September 9, 2013

Two-Phase I/O (3)

Process O's request

.............. Process 1's request
. TP-1/O cycles N R
° One I/O aCCGSS |S allgned tO CB SIZG a File domain of process 0 e File domain c_)fprocess1 ™
i Read Next
. Multiple accesses (TP-1/O cycles) / K Rea \ ¥ Rend
- 1 CyC|e ConSIStlng flle I/O and data ! Collective buffe;;' Ccnllectm'ebuffe-r1
communications is repeated i Frocess 0 _ on Process | |
— TP-10 cycles are repeated until whole | Communication_ < _ R !
data region is accessed. . v AT A \ o .
User's buffer on Process 0 User's buffer on Process 1

: . < Task flow in the case of two-cycles >
» We still have room to overlap file I/O

phases with data communication

Serialized operations !
phases.

I-th cycle request
: Time
Read | | s

Exchange 1

< Two-Phase I/O flow in each MPI process >

MAMHIP13 @ PPAM 2013, September 9, 2013

Multithreaded Two-Phase I/O (1)

® Pipelined operations
Overlap of data exchange with file I/0

Increase in the number of cycles leads to
higher overlap ratio between data
exchange and file 1/0O.

— Minimization of total utilized memory size

® Two proposed Implementations
[1. Multithreaded implementation using a]

Pthreads library

» Available on many platforms
» Portable API

2. Asynchronous I/O API

Hh TP request
Read | |

_F

0[O0 |11 n-1

n-1

Original Two-Phase 1/O
]
Overlapping

o
=
—
]
=

Pipelined Two-Phase 1/O

MAMHIP13 @ PPAM 2013, September 9, 2013

Multithreaded Two-Phase I/O (2)

pthread create()

<Main thread> <l/0O thread>
|
I/O
request { |Read gueue
(1)
Read

N o | Mo b
queue

Data exg¢hange Data

with gther exchange

processes

. Overlapping strategy
Main thread: Data exchanges

/O thread: File 1/O
Synchronization by using shared gueues (read and exchange queues)

. Further optimization
Multiple 1/0O requests in shared queues

The number of slots can be managed by MPI _Info_set with a key-value pair.

MAMHIP13 @ PPAM 2013, September 9, 2013

Multithreaded Two-Phase 1/O (3)

e Two-Phase I/O flow in collective read operations

main Exch. || Exch. || Exch. || Exch. || Exch. || Exch. || Exch. || Exch. Exch.
thread 1)) (3) (4) (5) (6) (7) 8 |®WEEEEEE oW
— ~— ~— ~ |, ~] | ﬂ J =~ - 4
--------------- / 1—-----/1:-?-/"*t-;--’f‘-'&-:’-‘%;-ﬁ/&-;---"/"H-_-:l------------' /
7 7 7 77 LS| FN 71 =~ = s 7
|/ O Read Read Read Read Read Read Read Read s EmEEEE Read
thread (1) (2) (3) (4) (5) (6) (7) (8) (N)

N
\%

Overlapping between read and data exchange phases

» Exch.: Data exchange phase
» Read: Fileread phase

MAMHIP13 @ PPAM 2013, September 9, 2013 15

CPU Core Affinity Management in Multithreaded Two-Phase I/O

e Prevention of race condition between threads
e Management by using pthread_attr_setaffinity_np(Q)
e Core management via MPI_Info object

pthread_attr_setaffinity_np(Q

Main thread \
pthread_create() \ ! - | \w

1 T '1 pthread_create(\
Socket To/From — <“ | |
6 7

To/From 2 #l Host bridge 2 3 |\

Host bridge L

Socket #Ot Socket #1 I
Socket #Ot \ /O thread I
9

Socket Socket 8 12 13
#2 H #3 @& — =
10 || 11 14 14\

Main thread

Hyper- 2 N
Transport Hyper-
\ / wcket #2 Transport OCKet#3 T
main thread: Core-0 main thread: Core-0 /0 thread
|/O thread : Core-3 (scheduler dependent) I/O thread : Core-15

Prevention of race condition by deploying

Race condition in the same CPU socket threads on different CPU sockets

MAMHIP13 @ PPAM 2013, September 9, 2013

Performance Evaluation (1)
eEvaluation on T2K Open Supercomputer (T2K-Toudal)
Specifications of a PC node of the T2K-Toudai (Special node group: 32 nodes in total)

CPU 4 x AMD Opteron (Barcelona, 2.3 GHz, 4 cores)
Memory 32 GiB (4 x 8 GiB)

Interconnect Myrinet 10Gbps (IP over Myrinet)

OS Linux kernel 2.6.18-53 with glibc version 2.5
MPI library MPICHZ2 ver.1.4.1 with our implementation
HDFS5 library HDFS5 version 1.8.10

Parallel file system | Lustre ver. 1.8.1 (1 MDS, 4 OSTs)

® |/O performance evaluation by using a simple parallel HDF5 test code in an HDF5
source code distribution with our some modifications

® Due to some unsupported HDF5 APIs in the newest IOR benchmark, we gave up to
use the IOR.

® Thread deployment on CPU cores
v' CPU core management by using MPI_Info_set() in the HDF5 test program with some
key-value pairs

® Eliminating file cache effect by remounting the Lustre file system prior to every I/O
operation run

MAMHIP13 @ PPAM 2013, September 9, 2013

Performance Evaluation (2)

e HDF5 test program (pseudo code)

® About 2.2 GIiB data set was read in collective manner.
e 2-dimentional data : 24,320 x 24,320 with integer data type

® 32 MPI processes (1 process/node)

datasetl = H5Dopen2(fidl, “Datal”,
H5P_DEFAULT);

;‘.iie_dataspace = H5Dget_space(datasetl);

'r'(;_t = H5Sselect_hyperslab(file_dataspace, ...);
'r'r;em_dataspace = H5Screate_simple(...);
;;‘er_plist = H5Pcreate(H5P_DATASET_XFER);

ret = H5Pset_dxpl_mpio(xfer_plist,
H5FD_MPIO_COLLECTIVE);

A

io_time = MPI_Wtime();

ret = H5Dread(dataset1, H5T NATIVE_INT,
mem_dataspace, file_dataspace,
xfer_plist, &(data_array1[0][0]));

io_time = MPI_Wtime() - io_time; 'T‘

H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
H5Dclose(datasetl);

\

Preparation of collective read operations

|

Measurement of collective read operations
for a target dataset

MAMHIP13 @ PPAM 2013, September 9, 2013

Performance Evaluation (3)
® |/O times in collective read by using PHDF5 (32 MPI processes)

10 11
‘ 9.8 10.8 w=lil==ior-2 (np=32]

wle=jor-4 (np=32)

10.4 i ior-8 (Np=232)

10.2 /%
§ 10

8.8 == o0rnginal Eg-ﬂ %

l ' Ior-2 and ior-4 were=m=ior-2 = 9.6

54 better than the “de=lor-4 9.4

sl jOr-8 9.2

original.
* Anincrease in the number of I/0 requests led to performance
improvements in every case.
Up to 7% minimization was achieved relative to the original TP-10.
Only the case (c) minimized up to 8% relative to the case (a) in each.
/O times in the cases (b) and (d) were longer than the original case (a).

°

°

°

q —
e R =
Es.s 9.8
=8

.6 é 9.6 w=i=ior-2 (np=32)
8.4 9.4 =de=jor-4 (np=32) |
8.2 9.2 e jOr-f (ND=37)
8 T T T 9 T T T
4 16 64 256 1024 4 16 64 256 1024
Total CB size (MB) Total CB size (MB)

(c) core management, main:0, 1/0:15 (d) core management, main:15, 1/0:0

MAMHIP13 @ PPAM 2013, September 9, 2013

Performance Evaluation (4)

e Analysis of internal operation times of Two-Phase |/O
& TP-10 for collective read consists of

1. Contiguous read operations

2 Dat h In order to examine what was going on
| dia exehanges inside the TP-10

& Time measurement for each operations
v'read and data exchanges

4 Calculation of I/O times by using the measured internal times
¢ Comparison with the measured times to examine overlapping effects and so

forth.
rnaX(tcomm ’ tread)) (l_ SCB / Sdata) + (tcomm T tread)) SCB / Sdata
rtcomm . mean communication time
tread : mean read time
< Scg 1 CBsize
\Sdata . Size of accessed region per process

MAMHIP13 @ PPAM 2013, September 9, 2013

Performance Evaluation (5)
e|/O time calculation model

< tcomm >
main Exch. || Exch. || Exch. || Exch. || Exch. || Exch. || Exch. || Exch. Exch.
thread (1) (2 3) 4) (5) (6) (7) 8 |®HmEEEEE o)
oy, —y — J = Sy ~—

............... D i St ey SR P

7 7 7 i re|FY 71 = ~ s 7
|/ O Read Read Read Read Read Read Read Read s mmEEEI Read
thread (1) (2) 3 (4) ©)) (6) (7) (8) (N)

tread
Sdata /SCB -1 Cycles <

Operation flow in 4 /O requests case

Exchange time /cycle: t___ /(S

Read time\/cycle : read /(Sda /SCB)

[read /(Sdata / SCB} {(Sdata / SCB _1)) maX(read /Sdata /SCB' comm /Sdata / S j{ comm /Sdata / S]
- maX(t (1 SCB /Sdata) + (t Lread) ' SCB /S

read ! comm) comm data

PPAM 2013, September 9, 2013

Performance Evaluation (6)

® Analysis of internal operations in TP-10 with CPU core affinity
main:0, 1/0:1 main:0, 1/0: 1

10 10
‘ 9)_—_P.a—-l—l 9
/—\ 8
8
© 7 ! \\
8 E 6 m\ E °
O & il /
o £ A A
E 4 +4— — E 4
| E comm(ior-2, mean) \ = » \

e Calculated I/0O times in the cases (c) and (d) were shorter than those in
the cases (a) and (b), respectively.

!

* CPU core management had an impact in I/O performance improvements.

8 /,.W 8 AN
7 7
;] 8 . \\
= o5 N
)
é 4 E 4 N
;3 = \
=ipe=comm{ior-2, mean) 3 b d ==iem cOMM (ior-4, mean) \
2 -
) =pi=reqd(ior-2, mean) \. 2 =4e=reqd (ior-4, mean) ‘\‘
" . 3 1
o =¢p=calculated(ior-2) =p=Cqalculated(ior-4)
T T T 0 T T T
4 16 64 256 1024 4 16 64 256 1024
Total CB size (MB) Total CB size (MB)

(c) 2 1/0 requests (main:0, 1/0:15) (d) 4 1/0 requests (main:0, 1/0:15)

Related Work

e P. Dickens and R.Thakur, “Improving Collective I/0O Performance Using Threads,”
Proc. of 13" International Parallel Processing Symposium and 10" Symposium
on Parallel and Distributed Processing, pp.38-45 (1999)

e X. Ma et al., “Improving MPI-IO Output Performance with Active Buffering Plus

Threads,” Proc. of IPDPS’03 (2003)

v Both works showed excellent overlapping by using multithreaded scheme, however
they overlapped computations with file 1/O.

v While our approach is addressing to overlap Two-Phase I/O operations.

e J.G. Blas et al, “View-Based Collective I/O for MPI-IO”,Proc. of CCGRID2008, pp.
409-416 (2008)

v Optimization of the TP-IO by eliminating extra communication cost which generates file
and memory access patterns on demand

Related Work (cont'd)

e J.G. Blas et al, “Implementation and Evaluation of File Write-Back and
Prefetching for MPI-IO over GPFS”, IIHPCA, Vol. 24, pp.78-92 (2010)

v GPFS is used to have background writing and read-ahead operations to overlap with
data exchanges.

v Multithread scheme is used, however this work is dependent on GPFS.

e J.P. Prost et al., “MPI-IO/GPFS, An Optimized Implementation of MPI-10 on Top
of GPFS,” Proc. of SC2001, p. 58 (2001)

v Overlapping of 1/O operations with data exchanges is realized by using double buffering
scheme.

v Our proposal is similar to this work, however this idea is tightly coupled with GPFS
functions, while our proposal is independent of underlying file system at least a
Pthreads library is available.

Concluding Remarks

. Proposal of CPU core affinity management scheme in multithreaded TP-10
CPU core affinity management in multithreaded operations

Prevention of race condition on the same CPU
. Performance evaluation
Good performance improvements

Internal file read and communication times were minimized by deploying an 1/O
thread on a different CPU, being apart from CPU where a main thread was working.

7% improvements relative to the original TP-10

8% improvements relative to the multithreaded TP-10 without CPU core affinity
management

. Future work
Collective write implementation

Further examinations about resource utilization by monitoring some system
specific resources such as CPU and I/O systems

Utilization of an affinity management library such as hwloc or likwid

