
A study on adaptive algorithms for numerical quadrature

on heterogeneous multicore and GPU based systems

Giuliano Laccetti1, Marco Lapegna1,Valeria Mele1, Diego Romano2

A parallel adaptive algorithm for the computation of a multidimensional integral on heterogeneous systems is described. Two different strategies have

been combined together in a single algorithm: a first procedure is in charge of the load balancing among the threads on the multicore CPU and a

second one is in charge of an efficient execution on the GPU of the computational kernel. Experimental results on a system with a quad-core CPUs

Intel Core I7 950 @ 3Ghz and two GPUs NVIDIA C1060 have been achieved.

2 Institute of High Performance Computing

and Networking ICAR - Naples branch

National Research Council

via P. Castellino, Naples, Italy

1 Department of Mathematics and its Applications

University of Naples Federico II,

Via Cintia Monte S. Angelo,

80126 Naples, Italy

the subdomains s in H are independent and can

be processed by different threads of the CPU

Host algorithm based on

Parallelism at Subdomains Level

the function evaluations 𝑓 𝑥𝑖 in the basic rule r are independent

and can be executed by different threads of the GPU

Device algorithm based on Parallelism

at Integration Formula Level

initialize H, Q(0) and E(0)

while (stopping criterion not satisfied) do iteration j

 1) select s*H such that e*=max e(k)

 2) divide s* in two parts s() and s()

 3) compute r(), r() , e() and e()

 4) sort the subdomains in H according the errors e(k)

 5) update Q(j) and E(j)

endwhile

10 functions in each family

𝐹1 = cos (2𝜋𝛽1 + 𝛼𝑖
𝑑
𝑖=1 𝑥𝑖) oscillating functions

𝐹2 = (1 + 𝛼𝑖
𝑑
𝑖=1 𝑥𝑖)

−𝑑−1 corner peak functions

𝐹3 = exp (− 𝛼𝑖|
𝑑
𝑖=1 𝑥𝑖 − 𝛽𝑖|) C

(0) functions

𝑟 = 𝐴𝑖𝑓(𝑥𝑖
𝑛

𝑖=1
)

P R O B L E M : Basic rule: 𝐼 𝑓 = 𝑓(𝑡1
𝑈

, . . , 𝑡𝑑)𝑑𝑡1⋯𝑑𝑡𝑑

𝑈 = 𝑎1, 𝑏1 ×⋯× 𝑎𝑑 , 𝑏𝑑 2 ≤ 𝑑 ≤ 10

𝑟 = 𝐴𝑖𝑓(𝑥𝑖
𝑛

𝑖=1
) ~ 𝑓(𝑡1

𝑈

, . . , 𝑡𝑑)𝑑𝑡1⋯𝑑𝑡𝑑

𝑂(103) ≤ 𝑛 ≤ 𝑂(104) (Genz & Malik rule)

Adaptive algorithm:
An iterative procedure that refines the integration domain U, evaluating the quadrature rule r only in the subdomains s* with the largest error e* in a suitable data structure H

Main issues: management of the fine grain parallelism Main issue: design of a scalable H

The access to a single centralized H produces fast numerical convergence but

several synchronizations among all threads (therefore very poor scalability)

Solution: No centralized data structure! The threads are logically organized

according to a 2-dimensional periodical mesh 𝑀2 . Each thread 𝑇𝑖 manages a

private sub-structure 𝐻𝑖 . Then it attempts to share its item s∗𝑖 ∈ 𝐻𝑖 with largest

error e∗𝑖 , only with the neighbor threads in the mesh 𝑀2.

Redistribution scheme of the

subdomains with large errors (red)

among the threads (yellow)

1) Summation is a hard to optimize kernel (e.g. many idle threads)

Solution: use of the reduce functions in CUDA toolkit 4.0

Host memory Device memory
𝑂(101)

𝑂(104)

2) Low bandwidth between device and host

memories

Solution: use of quadrature rules with high

ratio 𝜃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑑𝑎𝑡𝑎 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡

Genz & Malik rules on hyperrectangles

𝜃~𝑂 103

Relationship between data movement and

floating point operations in Genz & Malik rule

Devices threads

T E S T R E S U L T S

1,00E-11

1,00E-10

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1 2 3 4

F1

F2

F3

N
u
m

e
ri

c
a
l
e
rr

o
r

n. of cores

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4

F1

F2

F3

S
c
a
le

d
 s

p
e
e
d

-u
p

CPU

only !

n. of cores

0,00E+00

5,00E+08

1,00E+09

1,50E+09

2,00E+09

2,50E+09

3,00E+09

n=1245 n=2585 n=9385 n=37384

F1 (CPU+GPU)

F2 (CPU+GPU)

F3 (CPU+GPU)

F1 (CPU only)

F2 (CPU only)

F3 (CPU only)

3x

• Basic rule with n=1245 function evaluations in d=10 dimensions

• 10x106 function evaluations per core (4016 iterations)

n
.
o
f
fu

n
c
ti
o
n
 e

v
a
l.
 p

e
r

s
e
c
o
n
d

n. of nodes in the basic rule

Second Workshop on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems –

jointly with Parallel Processing and Applied Mathematics Conference PPAM2013 – Warsaw, Poland September 8-11, 2013

Performance gain of the algorithm with (solid line) and without (dashed line) the use of GPU Scalability test (fixed time) on the CPU when the number of cores grows

CPU

only !

Error reduction on the CPU when the number of cores grows

C O N C L U S I O N S

• We presented a heterogeneous multicore CPU/GPU algorithm with a performance gain of

3x with respect to a traditional quadrature adaptive algorithm running just on current

homogeneous multicore CPUs.

• The approach demonstrates the utility of graphics accelerators for multidimensional

quadrature mainly with a large number of function evaluations of the basic rule (n>104)

and in large dimension (d>10).

• Our approach can be combined with other levels of parallelism (e.g. cluster level)

