Mathematical Approach to the Performance Evaluation of Matrix-matrix Multiply Algorithm on a Two Level Parallel Architecture

Luisa D'Amore, <u>Valeria Mele</u>, Giuliano Laccetti Almerico Murli

Summary

- 1. Goal of the talk
 - A structured designing approach to predict performances
- 2. The choosen problem: matrix-matrix multiply
 - Decomposition in square blocks
- 3. Performance prediction of a sequential software
- 4. Performance prediction of a parallel software (BroadcastMultiplyRolling)
- 5. The subproblem: blocks multiply
 - Submatrices: matrix-matrix multiply of a different dimension
 - Repeat the steps 1-4
- 6. Merging the approaches
 - Performance prediction of a two level parallel software
- 7. Conclusions about the method

Goal

Show how to structurate the software designing approach to address the best (requested) performance

Using a mathematical approach as described in

L. D'Amore, G. Laccetti, V. Mele, D. Romano, A. Murli , *On a Mathematical Approach for Analyzing Parallel Algorithms*, submitted to CALCOLO - A Quarterly on Numerical Analysis and Theory of Computation

The Problem

Matrix-matrix Multiply

PPAM 2015 - Workshop on Models, V. Mele Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems •A, B, C are nxn matrices The Problem Matrix-matrix Multiply \sum

We can decompose the problem...

...partitioning the matrices in submatrices (blocks)

 $Cblock_{i,j} = Ablock_{i,0} \times Bblock_{0,j} + Ablock_{i,1} \times Bblock_{1,j} + Ablock_{i,2} \times Bblock_{2,j}$

3 matrix-matrix multiply for each Cblock

 $Cblock_{i,j} = Ablock_{i,0} \times Bblock_{0,j} + Ablock_{i,1} \times Bblock_{1,j} + Ablock_{i,2} \times Bblock_{2,j}$

27 sub-problems

The Problem

So we have the decomposition

$$D = \{matmul_{\frac{n}{3} \times \frac{n}{3}}^{i}\}_{0 \le i < (27)}$$

Where the subproblems are independent from each other 9 a time: -A product for each Cblock can be treated at a time -For each Cblock,

-the second product need the first solution to add

-The third product need the first and the second solution to add

And we have the **dependence matrix**

$$M_{D} = \begin{bmatrix} matmul_{\frac{n}{3} \times \frac{n}{3}}^{0} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{1} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{2} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{8} \\ matmul_{\frac{n}{3} \times \frac{n}{3}}^{9} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{10} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{11} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{17} \\ matmul_{\frac{n}{3} \times \frac{n}{3}}^{18} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{19} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{20} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{26} \\ \end{bmatrix}$$

<u>9 columns</u>

3 rows

The Problem

So we have the decomposition

$$D = \{matmul_{\frac{n}{3} \times \frac{n}{3}}^{i}\}_{0 \le i < (27)}$$

Where the subproblems are independent from each other 9 a time: -A product for each Cblock can be treated at a time -For each Cblock,

-the second product need the first solution to add

-The third product need the first and the second solution to add

And we have the **dependence matrix**

$$M_{D} = \begin{bmatrix} matmul_{\frac{n}{3} \times \frac{n}{3}}^{0} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{1} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{2} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{8} \\ matmul_{\frac{n}{3} \times \frac{n}{3}}^{0} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{10} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{11} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{17} \\ matmul_{\frac{n}{3} \times \frac{n}{3}}^{18} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{19} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{20} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{26} \end{bmatrix}$$

The Problem

So we have the decomposition

The problem AxB=C has

Concurrency Degree: 9Dependency Degree: 3

$$D = \{matmul_{\frac{n}{3} \times \frac{n}{3}}^{i}\}_{0 \le i < (27)}$$

Where the subproblems are independent from each other 9 a time: -A product for each Cblock can be treated at a time -For each Cblock,

-the second product need the first solution to add

-The third product need the first and the second solution to add

And we have the **dependence matrix**

$$M_{D} = \begin{bmatrix} matmul_{\frac{n}{3} \times \frac{n}{3}}^{0} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{1} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{2} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{8} \\ matmul_{\frac{n}{3} \times \frac{n}{3}}^{9} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{10} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{11} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{17} \\ matmul_{\frac{n}{3} \times \frac{n}{3}}^{18} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{19} & matmul_{\frac{n}{3} \times \frac{n}{3}}^{20} & \cdots & matmul_{\frac{n}{3} \times \frac{n}{3}}^{26} \end{bmatrix}$$

The Algorithm (sequential)

MACHINE $M_{1.1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes
- •2 memory levels,
- •between the levels we can transfer a n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,
- •for each execution we need a reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D,M_{1,1}}$ containing 27 of this operators to execute one after another, and we have the **execution matrix** $E_{D,M_{1,1}}$

$$\mathbf{E}_{D,M1,1} = \begin{bmatrix} \bigotimes_{0} \\ \bigotimes_{1} \\ \vdots \\ \bigotimes_{26} \end{bmatrix} \qquad \mathbf{r}_{E1} = 27 \text{ rows}$$

The Algorithm (sequential)

MACHINE $M_{1.1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes
- •2 memory levels,
- -between the levels we can transfer a n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,
- •for each execution we need a reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D,M_{1,1}}$ containing 27 of this operators to execute one after another, and we have the **execution matrix** $E_{D,M_{1,1}}$ and the **memory matrix** $MEM_{D,M_{1,1}}$

The Algorithm (sequential)

MACHINE $M_{1.1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes
- •2 memory levels,
- -between the levels we can transfer a n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,
- •for each execution we need a reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D,M_{1,1}}$ containing 27 of this operators to execute one after another, and we have the **execution matrix** $E_{D,M_{1,1}}$ and the **memory matrix** $MEM_{D,M_{1,1}}$

The Algorithm (sequential)

MACHINE $M_{1.1}$

•One processing unit

•the processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

-between the levels we can transfer a n/3 x n/3 block in time tblock_{mem}, with the rmem_{i} (reading) or wmem_{j} (writing) operators,

•for each execution we need a reading (before the execution) and a writing (after the execution)

The Algorithm (sequential)

MACHINE $M_{1.1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes
- •2 memory levels,
- -between the levels we can transfer a n/3 x n/3 block in time tblock_{mem}, with the rmem_{i} (reading) or wmem_{j} (writing) operators,

•for each execution we need a reading (before the execution) and a writing (after the execution)

The memory access time of $SW_{D,M_{1,1}}$ will be

$$T_{M}(Sw_{D,\mathcal{M}_{1,1}}) = r_{MEM1} \cdot tblock_{mem} = 52 \cdot tblock_{mem}$$
$$\mathbf{E}_{D,M1,1} = \begin{bmatrix} \otimes_{0} \\ \otimes_{1} \\ \vdots \\ \otimes_{26} \end{bmatrix} \qquad \mathbf{r}_{E_{1}} = 27 \text{ rows} \qquad \mathbf{MEM}_{D,M1,1} = \begin{bmatrix} r_{mem_{0}(\cdot)} \\ w_{mem_{1}(\cdot)} \\ \vdots \\ r_{mem_{26}} \\ w_{mem_{26}} \end{bmatrix} \qquad \mathbf{r}_{MEM_{1}} = 52 \text{ rows}$$

The Algorithm (sequential)

MACHINE $M_{1,1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes
- •2 memory levels,
- •between the levels we can transfer a n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,

•for each execution we need a reading (before the execution) and a writing (after the execution)

The execution time of $SW_{D,M_{1,1}}$ will be

$$T(Sw_{D,\mathcal{M}_{1,1}}) = T(ALG_{D,\mathcal{M}_1}) + T_M(Sw_{D,\mathcal{M}_{1,1}})$$
$$= 26 \cdot C(\otimes) \cdot tflops + 52 \cdot tblock_{mem}$$

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,

The Algorithm (parallel)

We cannot use more than 9 units without changing decomposition of the problem, becouse of the concurrency degree!

MACHINE *M*_{9,9} •9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator ⊗
•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,

The Algorithm (parallel)

We can imagine a cluster with (at least) 9 nodes

MACHINE $M_{9,9}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator ⊗
•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{mem}, with the rmem_i (reading) or wmem_j (writing) operators,

This is, for example, the case of communications among nodes in a cluster, so now we call it tblock_{com} for semplicity

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time **tblock**_{com}, with the rmem_i (reading) or wmem_i (writing) operators,

The Algorithm (parallel)

MACHINE $M_{9,9}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator ⊗
•2 memory levels,

•between the levels we can transfer 9 $n/3 \ge n/3$ block in time **tblock**_{com}, with the rmem_i (reading) or wmem_i (writing) operators,

If transfer is a communication between nodes, "reading" means "receiving" and "writing" means "sending", so we call all the operator "transfers", that is trans_i

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 $n/3 \ge n/3$ block in time **tblock**_{com}, with the **trans**_i operators

The Algorithm (parallel)

MACHINE M_{9,9}
•9 processing unit
•each processing unit is able to perform the (sequential) matrix-matrix multiply operator ⊗
•2 memory levels,
•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

We build the algorithm $ALG_{D,M9,9}$, containing 27 of this operators to execute 9 a time, and we have the **execution matrix** $E_{D,M9,9}$

$$\mathbf{E}_{D,M9,9} = \begin{bmatrix} \bigotimes_{0} & \bigotimes_{1} & \bigotimes_{2} & \bigotimes_{3} & \bigotimes_{4} & \bigotimes_{5} & \bigotimes_{6} & \bigotimes_{7} & \bigotimes_{8} \\ \bigotimes_{9} & \bigotimes_{10} & \bigotimes_{11} & \bigotimes_{12} & \bigotimes_{13} & \bigotimes_{14} & \bigotimes_{15} & \bigotimes_{16} & \bigotimes_{17} \\ \bigotimes_{18} & \bigotimes_{19} & \bigotimes_{20} & \bigotimes_{21} & \bigotimes_{22} & \bigotimes_{23} & \bigotimes_{24} & \bigotimes_{25} & \bigotimes_{26} \end{bmatrix}$$

Perfectly parallel: no empty

The Algorithm (parallel)

MACHINE M_{9,9}
•9 processing unit
•each processing unit is able to perform the (sequential) matrix-matrix multiply operator ⊗
•2 memory levels,
•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

We build the algorithm $ALG_{D,M9,9}$, containing 27 of this operators to execute 9 a time, and we have the **execution matrix** $E_{D,M9,9}$

$$\mathbf{E}_{D,M9,9} = \begin{bmatrix} \bigotimes_{0} & \bigotimes_{1} & \bigotimes_{2} & \bigotimes_{3} & \bigotimes_{4} & \bigotimes_{5} & \bigotimes_{6} & \bigotimes_{7} & \bigotimes_{8} \\ \bigotimes_{9} & \bigotimes_{10} & \bigotimes_{11} & \bigotimes_{12} & \bigotimes_{13} & \bigotimes_{14} & \bigotimes_{15} & \bigotimes_{16} & \bigotimes_{17} \\ \bigotimes_{18} & \bigotimes_{19} & \bigotimes_{20} & \bigotimes_{21} & \bigotimes_{22} & \bigotimes_{23} & \bigotimes_{24} & \bigotimes_{25} & \bigotimes_{26} \end{bmatrix} \quad \mathbf{r}_{E9} = 3 \text{ rows}$$

The Algorithm (parallel)

MACHINE $M_{9,9}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

We build the algorithm $ALG_{D,M9,9}$, containing 27 of this operators to execute 9 a time, and we have the **execution matrix** $E_{D,M9,9}$

The Algorithm (parallel)

If we suppose that the execution units are logically distribuited in a 3x3 grid, at the beginning each unit has a $n/3 \ge n/3$ block of each matrix.

The Algorithm (parallel)

If we suppose that the execution units are logically distribuited in a 3x3 grid, at the beginning each unit has a $n/3 \ge n/3$ block of each matrix. A possible $ALG_{D,M9,9}$, with **execution matrix** $E_{D,M9,9}$ is the well known BMR (Broadcast Multiply Rolling)


```
BMR Algorithm ALG<sub>D,M9,9</sub>
for p:=1 to 3
  (1) nodes on the ith grid diagonal broadcast their A block
      to all its grid row
  (2) the node i solves matmul(i*p)
  (3) if p<3, each node sends its B block to the upper one
      on the same column of the grid (rolling)
endfor
(matmul(p*i) is the subproblem matmul<sup>p.i</sup>/<sub>n × n</sub> ∈ D)
```

The Algorithm (parallel)

If we suppose that the execution units are logically distribuited in a 3x3 grid, at the beginning each unit has a $n/3 \ge n/3$ block of each matrix. A possible $ALG_{D,M9,9}$, with **execution matrix** $E_{D,M9,9}$ is the well known BMR (Broadcast Multiply Rolling)

Broadcast is a sending and 8 receiving simultaneously, that is 9 transfers

The Algorithm (parallel)

If we suppose that the execution units are logically distribuited in a 33 gridS, at the beginning each unit has a $n/3 \ge n/3$ block of each matrix. A possible $ALG_{D,M9,9}$, with **execution matrix** $E_{D,M9,9}$ is the well known BMR (Broadcast Multiply Rolling)


```
BMR Algorithm ALG_{D,\mathcal{M}_{9,9}}
for p:=1 to 3
(1) nodes on the ith grid diagonal broadcast their A block
to all its grid row
(2) the node i solves matmul(i*p)
(3) if p<3, each node sends its B block to the upper one
on the same column of the grid (rolling)
endfor
(matmul(p*i) is the subproblem matmul_{\frac{n}{2} \times \frac{n}{2}}^{p \cdot i} \in D)
```

Rolling is 9 simultaneous sending followed by 9 simultaneous receiving that is 9 transfers depending on other 9 transfers

The Algorithm (parallel)

If we suppose that the execution units are logically distribuited in a 33 gridS, at the beginning each unit has a $n/3 \ge n/3$ block of each matrix. A possible $ALG_{D,M9,9}$, with **execution matrix** $E_{D,M9,9}$ is the well known BMR (Broadcast Multiply Rolling)

BMR Algorithm $ALG_{D,\mathcal{M}_{9,9}}$]
for p:=1 to 3	
(1) nodes on the ith grid diagonal broadcast their A block	
to all its grid row	1
(2) the node i solves matmul(i*p)	
(3) if p<3, each node sends its B block to the upper one	
on the same column of the grid (rolling)	
endfor	
(matmul(p*i) is the subproblem $matmul_{\frac{n}{3} \times \frac{n}{3}}^{p \cdot i} \in D$)	

So, with 9 units so logically distribuited, for each p in [1,2] we will have 27 block transfers, and other 9 for p=3, that is 27*2+9=63 total transfer operators

The Algorithm (parallel)

MACHINE $M_{9,9}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

-between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

We implement the BMR in the software $SW_{D,M9,9}$, that will have the **memory matrix** $MEM_{D,M9,9}$

$$\mathbf{MEM}_{D,M9,9} = \begin{bmatrix} trans_0(\cdot) \ trans_1(\cdot) \ trans_2(\cdot) \ \dots \ trans_8(\cdot) \\ trans_9(\cdot) \ trans_{10}(\cdot) \ trans_{11}(\cdot) \ \dots \ trans_{17}(\cdot) \\ trans_{18}(\cdot) \ trans_{19}(\cdot) \ trans_{20}(\cdot) \ \dots \ trans_{26}(\cdot) \\ trans_{27}(\cdot) \ trans_{28}(\cdot) \ trans_{29}(\cdot) \ \dots \ trans_{35}(\cdot) \\ trans_{36}(\cdot) \ trans_{37}(\cdot) \ trans_{38}(\cdot) \ \dots \ trans_{35}(\cdot) \\ trans_{45}(\cdot) \ trans_{46}(\cdot) \ trans_{47}(\cdot) \ \dots \ trans_{53}(\cdot) \\ trans_{54}(\cdot) \ trans_{55}(\cdot) \ trans_{56}(\cdot) \ \dots \ trans_{62}(\cdot) \end{bmatrix}$$
broadcast

The Algorithm (parallel)

MACHINE $M_{9,9}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

-between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

We implement the BMR in the software $SW_{D,M9,9}$, that will have the **memory matrix** $MEM_{D,M9,9}$

$$\mathbf{MEM}_{D,M9,9} = \begin{bmatrix} trans_{0}(\cdot) & trans_{1}(\cdot) & trans_{2}(\cdot) & \dots & trans_{8}(\cdot) \\ trans_{9}(\cdot) & trans_{10}(\cdot) & trans_{11}(\cdot) & \dots & trans_{17}(\cdot) \\ trans_{18}(\cdot) & trans_{19}(\cdot) & trans_{20}(\cdot) & \dots & trans_{26}(\cdot) \\ trans_{27}(\cdot) & trans_{28}(\cdot) & trans_{29}(\cdot) & \dots & trans_{35}(\cdot) \\ trans_{36}(\cdot) & trans_{37}(\cdot) & trans_{38}(\cdot) & \dots & trans_{44}(\cdot) \\ trans_{45}(\cdot) & trans_{46}(\cdot) & trans_{47}(\cdot) & \dots & trans_{53}(\cdot) \\ trans_{54}(\cdot) & trans_{55}(\cdot) & trans_{56}(\cdot) & \dots & trans_{62}(\cdot) \end{bmatrix}$$

 $r_{MEM9}=7 rows$

The Algorithm (parallel)

MACHINE $M_{9,9}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

The execution time of $ALG_{D,M_{9,9}}$ will be $T(ALG_{D,\mathcal{M}_{9,9}}) = r_{E9} \cdot T_r = 3 \cdot C(\otimes) \cdot tflops$

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

•each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

The execution time of $ALG_{D,M9,9}$ will be $T(ALG_{D,M9,9}) = r_{E9} \cdot T_r = 3 \cdot C(\otimes) \cdot tflops$ Complexity of the operator (number of operations)
The Algorithm (parallel)

MACHINE $M_{9.9}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

The execution time of $ALG_{D,M9,9}$ will be $T(ALG_{D,M9,9}) = r_{E9} \cdot T_r = 3 \cdot C(\otimes) \cdot tflops$ Complexity of the operator (number of operations)

The memory access time of $SW_{D,M9,9}$ will be

 $T_M(Sw_{D,\mathcal{M}_{9,9}}) = r_{MEM9} \cdot tblock_{com} = 7 \cdot tblock_{com}$

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

-between the levels we can transfer 9 n/3 x n/3 block in time tblock com, with the trans $_{\rm i}$ operators

The execution time of $SW_{D,M9,9}$ will be

$$T(Sw_{D,\mathcal{M}_{9,9}}) = T(ALG_{D,\mathcal{M}_{9,9}}) + T_M(Sw_{D,\mathcal{M}_{9,9}})$$
$$= 3 \cdot C(\otimes) \cdot tflops + 7 \cdot tblock_{com}$$

The Algorithm (parallel)

MACHINE $M_{q,q}$

•9 processing unit

-each processing unit is able to perform the (sequential) matrix-matrix multiply operator \otimes

•2 memory levels,

•between the levels we can transfer 9 n/3 x n/3 block in time tblock_{com}, with the trans_i operators

The execution time of $SW_{D,M9,9}$ will be

$$T(Sw_{D,\mathcal{M}_{9,9}}) = T(ALG_{D,\mathcal{M}_{9,9}}) + T_M(Sw_{D,\mathcal{M}_{9,9}})$$
$$= 3 \cdot C(\otimes) \cdot tflops + 7 \cdot tblock_{com}$$

The speed up respect to $SW_{D,M1,1}$ (sequential one) will be

$$Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw_{D,\mathcal{M}_{9,9}})} = \frac{26 \cdot C(\otimes) \cdot tflops + 52 \cdot tblock_{mem}}{3 \cdot C(\otimes) \cdot tflops + 7 \cdot tblock_{com}}$$

The Algorithm (parallel)

MACHIN •9 proces •each pro •2 memo •between

The ex

Could we improve this speed up without re-design all the software?

The speed up respect to $SW_{D,M1,1}$ (sequential one) will be

 $Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw_{D,\mathcal{M}_{9,9}})} = \frac{26 \cdot C(\otimes) \cdot tflops + 52 \cdot tblock_{mem}}{3 \cdot C(\otimes) \cdot tflops + 7 \cdot tblock_{com}}$

The Algorithm (parallel)

V. Mele	PPAM 2015 - Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems
•A,	B, C are n/3 x n/3 matrices

The subproblem

Operator \otimes solves itself a matrix-matrix multiply problem, that is we can decompose it again.

•A, B, C are n/3 x n/3 matrices

•A and C are decomposed in n/3 vectors

The subproblem

Operator \otimes solves itself a matrix-matrix multiply problem, that is we can decompose it again.

•A, B, C are n/3 x n/3 matrices

•A and C are decomposed in n/3 vectors

The subproblem

Operator \otimes solves itself a matrix-matrix multiply problem, that is we can decompose it again.

The subproblem

So we have the decomposition

$$D' = \{matvec_{\frac{n}{3} \times \frac{n}{3}}^{i}\}_{0 \le i < (\frac{n}{3} - 1)}$$

where the subproblems are all independent from each other And we have the **dependence matrix**

$$M_{D'} = \left[matvec^0_{\frac{n}{3} \times \frac{n}{3}} matvec^1_{\frac{n}{3} \times \frac{n}{3}} \dots matvec^{\frac{n}{3} - 1}_{\frac{n}{3} \times \frac{n}{3}} \right]$$

The subproblem

So we have the decomposition

•Concurrency Degree: n/3 •Dependency Degree: 1

$$D' = \{matvec_{\frac{n}{3} \times \frac{n}{3}}^{i}\}_{0 \le i < (\frac{n}{3} - 1)}$$

where the subproblems are all independent from each other And we have the **dependence matrix**

$$M_{D'} = \left[matvec_{\frac{n}{3} \times \frac{n}{3}}^{0} matvec_{\frac{n}{3} \times \frac{n}{3}}^{1} \dots matvec_{\frac{n}{3} \times \frac{n}{3}}^{\frac{n}{3}-1} \right]$$

The subAlgorithm (sequential)

MACHINE $M'_{1,1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator ∴
 •2 memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The subAlgorithm (sequential)

MACHINE M'_{1,1}

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator •2 memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D',M'1,1}$ containing n/3 of this operators to execute one after another, and we have the **execution matrix** $E_{D',M'1,1}$ with

 $r_{E1D} = n/3$ rows

The subAlgorithm (sequential)

MACHINE M'_{1,1}

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator •2 memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D',M'1,1}$ containing n/3 of this operators to execute one after another, and we have the **execution matrix** $E_{D',M'1,1}$ with

 $r_{E1D} = n/3$ rows

The subAlgorithm (sequential)

MACHINE M'_{1,1}

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator ∴
 •2 memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D',M'1,1}$ containing n/3 of this operators to execute one after another, and we have the **execution matrix** $E_{D',M'1,1}$ with

 $r_{E1D'}=n/3$ rows

The related software $SW_{D',M'_{1,1}}$ (that we can call \otimes) will have also a **memory matrix** MEM_{D',M'_{1,1}} with

$$\mathbf{r}_{\text{MEM1D'}} = \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \text{ rows}$$

The subAlgorithm (sequential)

MACHINE $M'_{1,1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator \boxtimes •2 memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The execution time of \otimes will be

$$T(\otimes) = T(ALG_{D',\mathcal{M}'_{1,1}}) + T_M(\otimes)$$
$$= \frac{n}{3} \cdot C(\boxtimes) \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \cdot tvec_{mem}$$

The subAlgorithm (sequential)

MACHINE $M'_{1,1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator ≥ memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The execution time of \otimes will be

$$T(\otimes) = T(ALG_{D',\mathcal{M}'_{1,1}}) + T_M(\otimes)$$

= $\frac{n}{3} \cdot \overline{C(\boxtimes)} \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \cdot tvec_{mem}$
Complexity of the operator (number of operations)

The subAlgorithm (sequential)

MACHINE $M'_{1,1}$

•One processing unit

- •the processing unit is able to perform the (sequential) matrix-vector multiply operator ≥ memory levels,
- •between the levels we can transfer a n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The execution time of \otimes will be

$$T(\otimes) = \frac{n}{3} \cdot 2 \cdot \left(\frac{n}{3}\right)^2 \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \cdot tvec_{mem}$$
$$= 2 \cdot \left(\frac{n}{3}\right)^3 \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \cdot tvec_{mem}$$

The subAlgorithm (parallel)

This choise is to simulate a cluster node with 8 cores

MACHINE *M*'_{8,8} •8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The subAlgorithm (parallel)

MACHINE M'8,8

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D',M'8,8}$ containing n/3 of this operators to execute 8 a time, and we have the **execution matrix** $E_{D',M'1,1}$ with

$$\mathbf{r}_{\text{E8D'}} = \frac{n}{3 \cdot 8} = \frac{n}{24} \text{ rows}$$

The subAlgorithm (parallel)

MACHINE M'_{8,8}

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D',M'8,8}$ containing n/3 of this operators to execute 8 a time, and we have the **execution matrix** $E_{D',M'1,1}$ with

$$\mathbf{r}_{\text{E8D}} = \frac{n}{3 \cdot 8} = \frac{n}{24} \text{ rows}$$

If n/3 is multiple of 8, the matrix won't have empty elements, and the algorithm will be perfectly parallel

The subAlgorithm (parallel)

MACHINE M'_{8,8}

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

We build the algorithm $ALG_{D',M'8,8}$ containing n/3 of this operators to execute 8 a time, and we have the **execution matrix** $E_{D',M'1,1}$ with

$$\mathbf{r}_{\text{E8D'}} = \frac{n}{3 \cdot 8} = \frac{n}{24} \text{ rows}$$

If n/3 is multiple of 8, the matrix won't have empty elements, and the algorithm will be perfectly parallel

The related software $SW_{D',M'_{1,1}}$ (that we can call \bigotimes_{Par}) will have also a **memory matrix** MEM_{D',M'8,8} with

$$\mathbf{r}_{\text{MEM8D}} = \left(\frac{n}{3} + 2\right) \cdot \frac{n}{24} \text{ rows}$$

The subAlgorithm (parallel)

MACHINE M'_{8,8}

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The execution time of \bigotimes_{Par} will be

$$T(\otimes_{Par}) = T(ALG_{D',\mathcal{M}'_{8,8}}) + T_M(\otimes_{Par})$$
$$= \frac{n}{24} \cdot C(\boxtimes) \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{24} \cdot tvec_{mem}$$

The subAlgorithm (parallel)

MACHINE M'_{8,8}

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The execution time of \bigotimes_{Par} will be

$$T(\otimes_{Par}) = T(ALG_{D',\mathcal{M}'_{8,8}}) + T_M(\otimes_{Par})$$
$$= \frac{n}{24} \cdot C(\boxtimes) \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{24} \cdot tvec_{mem}$$
$$Complexity of the operator (number of operations)$$

The subAlgorithm (parallel)

MACHINE M'_{8,8}

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The execution time of \bigotimes_{Par} will be

$$T(\otimes_{Par}) = \frac{n}{24} \cdot 2 \cdot \left(\frac{n}{3}\right)^2 \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{24} \cdot tvec_{mem}$$

The subAlgorithm (parallel)

MACHINE M'_{8,8}

•8 processing unit

•each processing unit is able to perform the (sequential) matrix-vector multiply operator
•2 memory levels,

•between the levels we can transfer 8 n/3 vector in time tvec_{mem}, with reading and writing operators, •for each execution step we need n/3+1 reading (before the execution) and a writing (after the execution)

The speed up respect to \otimes (that is the sequential one) will be

$$Sp_{Sw}(\otimes_{Par}) = \frac{T(\otimes)}{T(\otimes_{Par})}$$
$$= \frac{2 \cdot \left(\frac{n}{3}\right)^3 \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \cdot tvec_{mem}}{\frac{n}{24} \cdot 2 \cdot \left(\frac{n}{3}\right)^2 \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{24} \cdot tvec_{mem}} > 1$$

Two levels of parallelism

What if we implement both the levels of parallelism to solve the first nxn problem AxB=C ?

Two levels of parallelism

The speed up of $SW_{D,M9,9}$ respect to $SW_{D,M1,1}$ is

$$Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw_{D,\mathcal{M}_{9,9}})} = \frac{26 \cdot C(\otimes) \cdot tflops + 52 \cdot tblock_{mem}}{3 \cdot C(\otimes) \cdot tflops + 7 \cdot tblock_{com}}$$

Calling $SW_{D,M9,9}$ the software where the operator \otimes is substituted by \otimes_{Par} the speed up of $SW_{D,M9,9}$ respect to $SW_{D,M1,1}$ is

$$Sp_{Sw}(Sw'_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw'_{D,\mathcal{M}_{9,9}})}$$
$$= \frac{26 \cdot \left(\frac{n}{3} \cdot C(\boxtimes) \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{3} \cdot tvec_{mem}\right) + 52 \cdot tblock_{mem}}{3 \cdot \left(\frac{n}{24} \cdot C(\boxtimes) \cdot tflop + \left(\frac{n}{3} + 2\right) \cdot \frac{n}{24} \cdot tvec_{mem}\right) + 7 \cdot tblock_{com}}$$
$$> Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}})$$

Two levels of parallelism Sequential mat-mat operators The speed up of $SW_{D,M_{9,9}}$ respect to $SW_{D,M_{1,1}}$ is $Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw_{D,\mathcal{M}_{9,9}})} = \frac{26 \cdot C(\otimes) \cdot tflops - 52 \cdot tblock_{mem}}{3 C(\otimes) \cdot tflops - 7 \cdot tblock_{com}}$ Calling $SW_{D,M9,9}$ the software where the operator \otimes is substituted by \bigotimes_{Par} the speed up of $SW'_{D,M9,9}$ respect to $SW_{D,M1,1}$ is $Sp_{Sw}(Sw'_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw'_{D,\mathcal{M}_{9,9}})}$ $=\frac{26\cdot\left(\frac{n}{3}\cdot C(\boxtimes)\cdot tflop+\left(\frac{n}{3}+2\right)\cdot\frac{n}{3}\cdot tvec_{mem}\right)+52\cdot tblock_{mem}}{3\cdot\left(\frac{n}{24}\cdot C(\boxtimes)\cdot tflop+\left(\frac{n}{3}+2\right)\cdot\frac{n}{24}\cdot tvec_{mem}\right)+7\cdot tblock_{com}}$ $> Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}})$

Two levels of parallelism Sequential mat-mat operators The speed up of $SW_{D,M_{9,9}}$ respect to $SW_{D,M_{1,1}}$ is $Sp_{Sw}(Sw_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw_{D,\mathcal{M}_{9,9}})} = \frac{26 \cdot C(\otimes) \cdot tflops - 52 \cdot tblock_{mem}}{3 C(\otimes) \cdot tflops - 7 \cdot tblock_{com}}$ Calling $SW_{D,M9,9}$ the software where the operator \otimes is substituted by \otimes_{Par} the speed up of $SW'_{D,M_{9,9}}$ respect to $SW_{D,M_{1,1}}$ is $Sp_{Sw}(Sw'_{D,\mathcal{M}_{9,9}}) = \frac{T(Sw_{D,\mathcal{M}_{1,1}})}{T(Sw'_{D,\mathcal{M}_{9,9}})}$ Parallel mat-mat operators $=\frac{26\cdot\left(\frac{n}{3}\cdot C(\boxtimes)\cdot tflop+\left(\frac{n}{3}+2\right)\cdot\frac{n}{3}\cdot tvec_{mem}\right)+52\cdot tblock_{mem}}{3\left(\frac{n}{24}\cdot C(\boxtimes)\cdot tflop+\left(\frac{n}{3}+2\right)\cdot\frac{n}{24}\cdot tvec_{mem}\right)+7\cdot tblock_{com}}$ $> Sp_{Sw}(Sw_{D,\mathcal{M}_{0,0}})$

Conclusions

Summarize: What did we do?

1. We started supposing a problem decomposed for a machine like a cluster, and we choosen a particular decomposition, that is in 9 submatrices.

Conclusions

Summarize: What did we do?

- 2. Using the model and the procedure that the model lead to,
 - we built a sequential algorithm for a machine with 1 processing unit and then a parallel one for a cluster of 9 nodes, that need to communicate
 - We observed easily a speed up that considers both execution and memory access (communication) time and shows very precisely the gain (when machine parameters are known)

Conclusions

Summarize: What did we do?

- 3. We supposed that the nodes of the cluster have their own parallel architecture, that is they are multicore, and focused on the work of a single node: the subproblem it solves
 - we built a sequential algorithm for a machine with 1 processing unit and then a parallel one for a multicore with 8 cores, that access the memory concurrently
 - We observed easily another speed up at this second level

Conclusions

Summarize: What did we do?

4. We mixed the two design

- we built an algorithm that meet all the <<cluster of multicore>> possibilities
 - We observed easily the speed up respect to the completely sequential one
 - If you know the parameters that characterize the machine, the resut is a prediction very closed to reality, and all the bonds and limits are highlight.

Conclusions

What can we do?

- 1. We can substitute in the ratio many combinations of the modules we explosed, to analyze different gains with the same machine
- 2. We can change the dimension of the problem
 - we should just change n in the procedure
V. Mele PPAM 2015 - Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems

Conclusions

What can we do?

- 3. We can change the starting decomposition
 - It will lead just different dependency, execution and memory matrices with different numbers of rows

4. We can change the machine characteristics

- It will lead just different execution and memory matrices with different numbers of rows
- 5. We can analyze other levels of parallelism
 - The procedure is recursive: we can build matrices for each operator involved, to explore the parallelism possibilities and benefits

V. Mele PPAM 2015 - Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems

At the end

We are still working on the model to extend it, and explore other details.

We are also developing new applications using this formal point of view that leads a structured increment of levels of parallelism, with good control of the performance change.

For now...

THANK YOU FOR YOUR ATTENTION

