
Virtualizing CUDA enabled GPGPUs on ARM clusters

R. Montella1, G. Giunta1, G. Laccetti2, M. Lapegna2

1Department of Science and Technologies
University of Napoli Parthenope

http://hpsc.uniparthenope.it

C. Ferraro1, C. Palmieri1, V. Pelliccia1

{ raffaele.montella, giulio.giunta,
carmine.ferraro, carlo.palmieri, valentina.pelliccia }

@uniparthenope.it

2Department of Mathematics and Applications
University of Napoli Federico II

http://dma.unina.it

{ giuliano.laccetti,
marco.lapegna }
@unina.it

Workshop on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems

http://hpsc.uniparthenope.it
http://dma.unina.it

Generic Virtualization Service

• Framework for split-driver based abstraction
components

• Plug-in architecture

• Independent from:
– Hypervisor (or no-hypervisor)
– Communication
– Target of virtualization
– Architecture!

• High performance:
– Enabling transparent virtualization
– With overall performances better or not too far

from un-virtualized resources

G
V

ir
tu

S
h

tt
p

:/
/h

p
sc

.u
n

ip
ar

th
en

o
p

e
.i

t/

(since March 2010)

The Communicator
• Provides a high performance communication

between virtual machines and their hosts.

• The choice of the hypervisor deeply affects the
efficiency of the communication.

Hypervisor FE/BE comm Notes

No hypervisor Unix Sockets Used for testing purposes

Generic TCP/IP • Communication testing purposes
• Remote / Distributed virtualized resources (i.e. GPUs)
• High Performance Internet of Things

Xen XenLoop • runs directly on the top of the hardware through a custom Linux kernel
• provides a communication library between guest and host machines
• implements low latency and wide bandwidth TCP/IP and UDP

connections
• app transparent and offers an automatic discovery of the supported

VMs

VMware Virtual Machine
Communication
Interface (VMCI)

• commercial hypervisor running at the application level
• provides a datagram API to exchange small messages
• a shared memory API to share data
• an access control API to control which resources a virtual machine can

access
• and a discovery service for publishing and retrieving resources

KVM/QEMU VMchannel • Linux loadable kernel module now embedded as a standard component
• supplies a high performance guest/host communication
• based on a shared memory approach

Guest Host

Application

Stub Library

FrontEnd BackEnd

Communicators:

TCP/IP
Shared Memory

…

An application: Virtualizing gpGPUs

• GPUs

– Hypervisor independent

– Communicator independent

– GPU independent

– Programming model
independent

GVirtuS – pre OpenCL

• Full support to
– CUDA 3.x drivers

– CUDA 3.x runtime

• Partially supporting (more
work is needed)
– OpenGL integration

• Limitations:
No support after CUDA 3.x
because NVIDIA issues

GVirtuS - OpenCL

• Currently ongoing!

• Benchmarks available:
– Matrix Multiply
– Vector Product
– Histogram

• Why OpenCL instead of CUDA:

– Open Platform
– Hardware independent (CPUs, GPUs)
– Widely supported

But the world evolved differently…

• OpenCL didn’t behaved
as expected…

• …people uses CUDA…

• …we have to be back to
the CUDA plugin.

How it works

• Simplified example: allocate memory on the host

Application GVirtuS Front-End

GVirtuS
Communicator GVirtuS Back-End Drivers

char *p=

my_malloc(S);

char *my_malloc(

long SIZE) {

Function *f=

new Function(

“my_malloc”);

f->pushLong(SIZE);

f->execute();

}

return f->pullPtr();

char *my_malloc(

Function *f) {

long size=f-

>pullLong();

char *p=malloc(size);

}

f->pushPtr(p);

}

p=0x0023FF74

0x0023FF74

0x0023FF75

0x0023FF73

0x0023FF72

0x00f9ab17

0x00f9ab18

0x00f9ab16

0x00f9ab15

How it works

• Simplified example: accessing host memory

Application GVirtuS Front-End

GVirtuS
Communicator GVirtuS Back-End Drivers

success=

my_to_host(

p,”string to

copy”

);

int *my_to_host(

char *p, char *src) {

Function *f=

new Function(

“my_to_host”);

f->pushPtr(p);

f->pushString(src);

f->execute();

}

return f->pullInt();

char *my_to_host(

Function *f) {

char *p=f->pullPtr();

char *src=pullString();

int

result=to_host(p,src);

f->pushInt()

}

p=0x0023FF74

0x0023FF74

0x0023FF75

0x0023FF73

0x0023FF76

0x0023FF77 &result=0x0023FF94

result=0x00
success=0x00

memcpy(p, “string to copy”, 15)

GVirtuS and CUDA!

#include <stdio.h>
#include <cuda.h>
int main(void) {
 int n;
 cudaGetDeviceCount(&n);
 printf("Number of CUDA GPU(s): %d\n", n);
 return 0;
}

Consumer – The CUDA app Producer – The CUDA device host

cudaError_t cudaGetDeviceCount(int *count) {
 Frontend *f = Frontend::GetFrontend();
 f->AddHostPointerForArguments(count);
 f->Execute("cudaGetDeviceCount");
 if(f->Success())
 *count =
 *(f->GetOutputHostPointer<int>());
 return f->GetExitCode();
}

GVirtuS Frontend

GVirtuS Backend

Result *handleGetDeviceCount(
 CudaRtHandler * pThis,
 Buffer *input_buffer) {
 int *count = input_buffer->Assign<int>();
 cudaError_t exit_code;
 exit_code = cudaGetDeviceCount(count);
 Buffer *out = new Buffer();
 out->Add(count);
 return new Result(exit_code, out);
}

Process Handler

GVirtuS – post OpenCL

• On going support to
– CUDA 6.x drivers

– CUDA 6.x runtime

• Partially supporting (more
work is needed)
– OpenGL integration

• Limitations:
For now many, but
challenging!

Scenarios and prototypal applications

• Development workstation/1
– i7-940 2*NVIDIA Tesla C1060

• Development workstation/2

– i7-940 2*NVIDIA Titan X

• The AWS EC2 GPU machine

– g2.2xlarge 1*NVIDIA K250

• ARM based computing node/1

– Udoo Cortex A9 32bit - nogpu

• ARM based computing node/2

– NVIDTA Jetson Cortex A15 64bit – gpu/nogpu

Development Workstation

• Current GVirtuS CUDA 6.5 results running 0_Simple
SDK examples.

• Backend and Frontend on x86_64 (TcpIp)

AWS EC2 K250 GPU

• Elastic GPU sharing.

Backend: EC2 K250
Frontend: ARM Cortex A9

Backend: EC2 K250
Frontend: X86_64

ARM based computing nodes
• UDOO

– CPU Freescale i.MX 6 ARM
Cortex-A9 Quad core 1GHz

– GPU Vivante GC 2000 +
Vivante GC 355 + Vivante GC
320

– Integrated accelerators for
2D, OpenGL® ES2.0 3D and
OpenVG™

– RAM DDR3 1GB

• NVIDIA Jetson
– Tegra K1 SOC

– Kepler GPU with 192 CUDA
cores

– 4-Plus-1 quad-core ARM
Cortex A15 CPU

– 2 GB x16 memory 64 bit Fu
n

d
e

d
 b

y

A real life application:
Coupling EulerianLagrangian models for offshore and

coastal pollution tracing
WaComM (Water Community Model)

• Lagrangian 3D model

• simulate the transport and dispersion of

pollutants spilled out into offshore ocean

currents.

• Evolution of the Lagrangian Assessment for

Marine Pollution 3D (LAMP3D) model.

• Restarts

• Shared memory / CUDA Hybrid parallel

• Hybrid approach (Eulerian-Lagrangian

models)

• Coastal dynamics of the Bay of Naples

• Forecast the impact of pollutants spilled out

from both natural and anthropic sources in

high density areas of mussel culture.

WaComM Gulf of Pozzuoli pollutants sea

surface dispersion

ROMS Gulf of Pozzuoli sea surface currents

D. Di Luccio, A. Riccio, P. Troiano and R. Montella
University of Napoli Parthenope

ROMS
Regional Oceanic Model System

Wind
Initial and

boundary condistions

Internal Cycle

U, V, W

Particles Cycle

Computing of particles

CONC [C]

Akt (vertical T-dif

fusion)

lon_U, lon_V,

lat_U, lat_V,

lat_rho, lon_rho

mask_U, mask_V,

mask_rho,

Uwac, Vwac, Wwac,

Akt

Inital number

of particles
Sources

of particles

WaComM
Water Community Model

WaComM Torre del Greco (NA)

pollutants sea surface dispersion

ROMS Torre del Greco (NA) sea surface

currents

R
E

S
T

A
R

T

Parallel WaComM

Master

FORK

W AKT

JOIN

Interval Thread [2,4]

U V

Master

Parallel computations on data structures u v w and akt. The results

obtained will be managed for the calculation of the variable conc (c).

Particles Cycle

Computing of particles

CONC [C]

Uwac, Vwac, Wwac,

Akt

Inital number

of particles
Sources

of particles

WaComM
Water Community Model

R
E

S
T

A
R

T

Parallel Wacomm + GPU Cuda

Host

FORK

c c c c

JOIN

Host

Interval Thread [2,8]

Device
GPU Cuda

Modeling, forecasting and mapping of pollution
by escherichia coli and salmonella in coastal
areas dedicated to mussel production.

Funded by

project.

http://meteo.uniparthenope.it

http://meteo.uniparthenope.it

Current GVirtuS limitations

• The CUDA plugin is not thread-safe at the
consumer/front-end side

• The management of the pinned memory and
unified memory will be a serious challenge

Conclusions

• GVirtuS works with CUDA 6.x

• Clusters of (inexpensive) ARM computing nodes can
share one or more high-end GPUs hosted on
x86_64 machines.

• Clusters of x86_64 or ARM machines can consume
GPUs available on the cloud

• Virtual clusters of x86_64 machines could share
virtual GPUs

Future directions

• Short term plans:
– Update the CUDA plugin code in order to support as many features as

possible
– Setup a production NVIDIA Jetson cluster, perform performance tests

normalized on power needs.
– Implement a fully working version of hybrid parallel WaComM

• Medium term plans:
– Implement real world applications in the field of environmental

modeling

• Long and “long long” term plans:
– Face with CUDA 7 (at now it appears really tricky)

– Develop high performance network communicators for Infiniband or

similar.

Get, test and extend

• High Performance Scientific Computing Smart-
Lab:
http://hpsc.uniparthenope.it

• The source code public repository:
https://bitbucket.org/montella/gvirtus-dist

http://hpsc.uniparthenope.it
http://hpsc.uniparthenope.it
http://hpsc.uniparthenope.it
https://bitbucket.org/montella/gvirtus-dist
https://bitbucket.org/montella/gvirtus-dist
https://bitbucket.org/montella/gvirtus-dist
https://bitbucket.org/montella/gvirtus-dist
https://bitbucket.org/montella/gvirtus-dist

