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Many use cases in HPC Distributed (LAN) vs Parallel
m Parallel graph searching m Cheaper scalability
m Distributed model checking m Unlimited scalability, but

m Performance overhead!

Efficient distributed processing

Specialized algorithms and data structures needed!

m Contribution: Reducing roundtrips while CPU-efficient

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 4 /20



High-performance Networking

Infiniband hardware
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High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:
m Comparable in price to Ethernet
m Supports bandwidths up to 100 Gb/s

m Direct access to memory via PCI-E bus

RDMA: Remote Direct Memory Access
Directly access to remote memory without invoking remote CPUs

m Zero-copy networking
m Kernel bypassing

m No participation from remote CPUs

Performance: one-sided RDMA vs TCP

Roundtrips latency: < 3us (Infiniband) vs 60us (traditional Ethernet)
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Takes a data element d as parameter, and:
mif d e T, return found
mif d & T, insert d and return inserted

m if d € T and d cannot be inserted, return full

v

Design: Challenges

m How to distribute and access T = (by, ..., b,_1) efficiently?

m How to design find-or-put to perform efficiently?
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PGAS: Partitioned Global Address Space

Hybrid PGAS
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Details

Assuming N participating threads:
m PGAS: shared + distributed memory model
m Hybrid PGAS: PGAS + message passing (dashed edges)
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Hash Collisions

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x # y
m Efficiency of find-or-put depends on hashing strategy!
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Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x # y

m Efficiency of find-or-put depends on hashing strategy!

Existing Work

m Pilaf, 2014 (Cuckoo) Existing implementations either:

m Nessie, 2014 (Cuckoo) m Require more roundtrips

m FaRM, 2014 (Hopscotch) m Require locking schemes

m HERD, 2014 (CPU-intensive) m Are CPU-intensive )

Best strategy for find-or-put
Which strategy requires the least number of roundtrips?
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Comparing Hashing Strategies

Chained Hashing

-+ Theoretical comp. (1 + «)
- Dynamic mem. management

- Storing pointers
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-+ Using neighbourhoods
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Comparing Hashing Strategies

Chained Hashing

Theoretical comp. ©(1 + «)

- Dynamic mem. management

- Storing pointers

Cuckoo Hashing
Uses k hash functions
- Lookups require k roundtrips

- Relocations require locks

Hopscotch Hashing

Using neighbourhoods

Lookups require 1 roundtrip

- Relocations require locks

v

Linear Probing

Buckets are consecutive

No locking or relocations

- Roundtrips for lookups?

\

Linear Probing versus Hopscotch

m Due to Hopscotch invariant, lookups may be more expensive, but

m Inserts are arguably cheaper (amortized complexity)
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Linear Probing: Efficiency Bounds

Knuth, 1997

The expected number of buckets
to examine until the intended
buckets is found is at most:
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Knuth, 1997 Efficiency bound
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Linear Probing: Hiding Latency

Contribution: Asynchronous queries

Before chunk iteration, first request the next chunk:
m Overlapping roundtrips with computational activity

m Find next chunk with quadratic probing to prevent clustering
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g: Hiding Latency

Contribution: Asynchronous queries
Before chunk iteration, first request the next chunk:
m Overlapping roundtrips with computational activity

m Find next chunk with quadratic probing to prevent clustering

Defining query-chunk(/, d) Defining sync-chunk(s)
Obtains the i-th chunk, starting Takes a handle s as parameter,
from bucket by(q) waits until the corresponding query

m Returns a handle s has been completed.
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Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target
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Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) | \
1 €mmmm e =3 >

sync-chunk(so)

s» = query-chunk(2, d
sync—chunk(sl

s3 = query-chunk(3, d)
sync-chunk(s;)

ss = query-chunk(4, d)
sync-chunk(ss)
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Hash Table: Evaluation

Experimental Setup

All experiments have been perfomed on the DAS-5 cluster:
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m 64 GB internal memory each
m connected via 48Gb/s Infiniband
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Hash Table: Evaluation

Experimental Setup

All experiments have been perfomed on the DAS-5 cluster:
m 66 machines
m 16 cores each (Intel E5-2630v3)
m 64 GB internal memory each
m connected via 48Gb/s Infiniband

Benchmarks
Under different workloads, we measured:
m Throughput of find-or-put

m Latency of find-or-put

m Roundtrips of find-or-put
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Hash Table: Throughput

Total Throughput Speedup
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Hash Table: Throughput

Total Throughput Speedup
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Observations
m Throughputs up to 140 x 10° reached (66 machines)

m Remote speedup up to 110 obtained
m Local throughput of 495 x 10° reached (1 threads)
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Conclusions

m Minimizing roundtrips increases performance
m Overlapping queries reduces waiting-times and decreases latency

m Linear probing requires less roundtrips than Hopscotch and Cuckoo
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m Overlapping queries reduces waiting-times and decreases latency

m Linear probing requires less roundtrips than Hopscotch and Cuckoo

v
Performance

m find-or-put takes 4.5us on average with a = 0.9 and C = 64
m Peak-throughput of 140 x 10° op/s obtained

N

Performance Indication
m FaRM: Inserts take ~ 3bus
m Pilaf: Operations take ~ 30us

m Nessie: Inserts take ~ 25us
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