A Distributed Hash Table for Shared Memory

Wytse Oortwijn

Formal Methods and Tools,
University of Twente

August 31, 2015

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 1/20

Introduction

Contribution 1: Resolving Hash Collisions

Contribution 2: Hiding Latency

Experimental Evaluation

Conclusion

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

August 31, 2015

2 /20

Table of Contents

Introduction

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

Distributed Hash Table

Main challenge
Building a fast and CPU-efficient shared hash table:

m Minimal latency

m Minimal memory overhead

m Not relying on CPU-polling

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 4 /20

Distributed Hash Table

Main challenge
Building a fast and CPU-efficient shared hash table:

m Minimal latency

m Minimal memory overhead

m Not relying on CPU-polling

Many use cases in HPC

m Parallel graph searching

m Distributed model checking

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

Distributed Hash Table

Main challenge
Building a fast and CPU-efficient shared hash table:

m Minimal latency

m Minimal memory overhead

m Not relying on CPU-polling

Many use cases in HPC Distributed (LAN) vs Parallel
m Parallel graph searching m Cheaper scalability
m Distributed model checking m Unlimited scalability, but

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 4 /20

Distributed Hash Table

Main challenge
Building a fast and CPU-efficient shared hash table:

m Minimal latency

m Minimal memory overhead

m Not relying on CPU-polling

Many use cases in HPC Distributed (LAN) vs Parallel
m Parallel graph searching m Cheaper scalability
m Distributed model checking m Unlimited scalability, but

m Performance overhead!

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 4 /20

Distributed Hash Table

Main challenge
Building a fast and CPU-efficient shared hash table:

m Minimal latency

m Minimal memory overhead

m Not relying on CPU-polling

Many use cases in HPC Distributed (LAN) vs Parallel
m Parallel graph searching m Cheaper scalability
m Distributed model checking m Unlimited scalability, but

m Performance overhead!

Efficient distributed processing

Specialized algorithms and data structures needed!

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 4 /20

Distributed Hash Table

Main challenge
Building a fast and CPU-efficient shared hash table:

m Minimal latency

m Minimal memory overhead

m Not relying on CPU-polling

Many use cases in HPC Distributed (LAN) vs Parallel
m Parallel graph searching m Cheaper scalability
m Distributed model checking m Unlimited scalability, but

m Performance overhead!

Efficient distributed processing

Specialized algorithms and data structures needed!

m Contribution: Reducing roundtrips while CPU-efficient

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 4 /20

High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:
m Comparable in price to Ethernet
m Supports bandwidths up to 100 Gb/s

m Direct access to memory via PCI-E bus

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:
m Comparable in price to Ethernet
m Supports bandwidths up to 100 Gb/s

m Direct access to memory via PCI-E bus

RDMA: Remote Direct Memory Access
Directly access to remote memory without invoking remote CPUs

m Zero-copy networking
m Kernel bypassing

m No participation from remote CPUs

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:
m Comparable in price to Ethernet
m Supports bandwidths up to 100 Gb/s

m Direct access to memory via PCI-E bus

RDMA: Remote Direct Memory Access
Directly access to remote memory without invoking remote CPUs

m Zero-copy networking
m Kernel bypassing

m No participation from remote CPUs

Performance: one-sided RDMA vs TCP

Roundtrips latency: < 3us (Infiniband) vs 60us (traditional Ethernet)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 5/ 20

Hash Table: Challenges

Notation: Hash table
T = (bo,...,bn—1) as a sequence of buckets b;, where:

m n the hash table size and m the number of used entries

m o = 7 the load factor

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 6 /20

Hash Table: Challenges

Notation: Hash table

T = (bo,...,bn—1) as a sequence of buckets b;, where:

m n the hash table size and m the number of used entries

m o = 7 the load factor

Operation: only find-or-put(d)

Takes a data element d as parameter, and:
mif d e T, return found
mif d & T, insert d and return inserted

m if d € T and d cannot be inserted, return full

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 6 /20

Hash Table: Challenges

Notation: Hash table

T = (bo,...,bn—1) as a sequence of buckets b;, where:

m n the hash table size and m the number of used entries

m o = 7 the load factor

Operation: only find-or-put(d)

Takes a data element d as parameter, and:
mif d e T, return found
mif d & T, insert d and return inserted

m if d € T and d cannot be inserted, return full

v

Design: Challenges

m How to distribute and access T = (by, ..., b,_1) efficiently?

m How to design find-or-put to perform efficiently?

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 6 /20

PGAS: Partitioned Global Address Space

Assuming N participating threads:

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 7 /20

PGAS: Partitioned Global Address Space

Assuming N participating threads:
m PGAS: shared + distributed memory model

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 7 /20

PGAS: Partitioned Global Address Space

Hybrid PGAS

2 ~
, N
ST TSl

~

6 o o o

Details

Assuming N participating threads:
m PGAS: shared + distributed memory model
m Hybrid PGAS: PGAS + message passing (dashed edges)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 7 /20

Table of Contents

Contribution 1: Resolving Hash Collisions

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 8 /20

Hash Collisions

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x # y
m Efficiency of find-or-put depends on hashing strategy!

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 9 /20

Hash Collisions

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x # y
m Efficiency of find-or-put depends on hashing strategy!

Existing Work

m Pilaf, 2014 (Cuckoo)

m Nessie, 2014 (Cuckoo)

m FaRM, 2014 (Hopscotch)

m HERD, 2014 (CPU-intensive)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

Hash Collisions

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x # y

m Efficiency of find-or-put depends on hashing strategy!

v

Existing Work

m Pilaf, 2014 (Cuckoo) Existing implementations either:

m Nessie, 2014 (Cuckoo) m Require more roundtrips

m FaRM, 2014 (Hopscotch) m Require locking schemes

m HERD, 2014 (CPU-intensive) m Are CPU-intensive)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 9 /20

Hash Collisions

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x # y

m Efficiency of find-or-put depends on hashing strategy!

Existing Work

m Pilaf, 2014 (Cuckoo) Existing implementations either:

m Nessie, 2014 (Cuckoo) m Require more roundtrips

m FaRM, 2014 (Hopscotch) m Require locking schemes

m HERD, 2014 (CPU-intensive) m Are CPU-intensive)

Best strategy for find-or-put
Which strategy requires the least number of roundtrips?

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 9 /20

Comparing Hashing Strategies

Chained Hashing

-+ Theoretical comp. (1 + «)
- Dynamic mem. management

- Storing pointers

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 10 / 20

Comparing Hashing Strategies

Chained Hashing Cuckoo Hashing
+ Theoretical comp. ©(1 + «) + Uses k hash functions
- Dynamic mem. management - Lookups require k roundtrips
- Storing pointers - Relocations require locks

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 10 / 20

Comparing Hashing Strategies

Chained Hashing

+ Theoretical comp. ©(1 + «) + Uses k hash functions
- Dynamic mem. management - Lookups require k roundtrips
- Storing pointers - Relocations require locks

v

Hopscotch Hashing

-+ Using neighbourhoods
-+ Lookups require 1 roundtrip

- Relocations require locks

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 10 / 20

Comparing Hashing Strategies

Chained Hashing Cuckoo Hashing

+ Theoretical comp. ©(1 + «) + Uses k hash functions

- Dynamic mem. management - Lookups require k roundtrips

- Storing pointers | - Relocations require locks)
-+ Using neighbourhoods -+ Buckets are consecutive

-+ Lookups require 1 roundtrip -+ No locking or relocations

- Relocations require locks) - Roundtrips for lookups?)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 10 / 20

Comparing Hashing Strategies

Chained Hashing

Theoretical comp. ©(1 + «)

- Dynamic mem. management

- Storing pointers

Cuckoo Hashing
Uses k hash functions
- Lookups require k roundtrips

- Relocations require locks

Hopscotch Hashing

Using neighbourhoods

Lookups require 1 roundtrip

- Relocations require locks

v

Linear Probing

Buckets are consecutive

No locking or relocations

- Roundtrips for lookups?

\

Linear Probing versus Hopscotch

m Due to Hopscotch invariant, lookups may be more expensive, but

m Inserts are arguably cheaper (amortized complexity)

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

August 31, 2015 10 / 20

Linear Probing: Efficiency Bounds

Knuth, 1997

The expected number of buckets
to examine until the intended
buckets is found is at most:

%(”ﬁ)

August 31, 2015 11 /20

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

Linear Probing: Efficiency Bounds

Knuth, 1997

The expected number of buckets
to examine until the intended
buckets is found is at most:

%(”ﬁ)

August 31, 2015 11 /20

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

Linear Probing: Efficiency Bounds

Knuth, 1997 Efficiency bound

The expected number of buckets A chunk is expected to contain the
to examine until the intended intended bucket if:
buckets is found is at most: 1
<1-—
L (1+ ;> “= 2C—1
2C (1-a)?

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 11 /20

g: Efficiency Bounds

Knuth, 1997

The expected number of buckets
to examine until the intended
buckets is found is at most:

%(Hﬁ>

o’

Expected load-factor at which a chunk is full

4

3|

2 /
1 Il Il]
0 0.2 0.4
load-factor o

Chunk size C

Chunk size C

Efficiency bound

A chunk is expected to contain the
intended bucket if:

1
2C-1

a<l-—

213

29 -

25 -

21 F

‘ 4
0.8 1
load-factor o

I
0.6

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

August 31, 2015 11 /20

g: Efficiency Bounds

Knuth, 1997

The expected number of buckets
to examine until the intended
buckets is found is at most:
1 1
~ (1 _>
2C(+ (1-a)?

o’

Expected load-factor at which a chunk is full

Efficiency bound

A chunk is expected to contain the
intended bucket if:

1
2C-1

a<l-—

4

3|

|

Chunk size C

Chunk size C

213
9 B
2 C =64
,,,,,,,,,,,,,,,,,,,,,, _—
o s N
E=E
21

I I
0 0.2 0.4
load-factor o

‘ 4
0.8 1
load-factor o

I
0.6

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory

August 31, 2015

11/ 20

Table of Contents

Contribution 2: Hiding Latency

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 12 /20

Linear Probing: Hiding Latency

Contribution: Asynchronous queries

Before chunk iteration, first request the next chunk:
m Overlapping roundtrips with computational activity

m Find next chunk with quadratic probing to prevent clustering

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

Linear Probing: Hiding Latency

Contribution: Asynchronous queries
Before chunk iteration, first request the next chunk:
m Overlapping roundtrips with computational activity

m Find next chunk with quadratic probing to prevent clustering

Defining query-chunk(/, d)

Obtains the i-th chunk, starting
from bucket by(q)

m Returns a handle s

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

g: Hiding Latency

Contribution: Asynchronous queries
Before chunk iteration, first request the next chunk:
m Overlapping roundtrips with computational activity

m Find next chunk with quadratic probing to prevent clustering

Defining query-chunk(/, d) Defining sync-chunk(s)
Obtains the i-th chunk, starting Takes a handle s as parameter,
from bucket by(q) waits until the corresponding query

m Returns a handle s has been completed.

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 13 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d) \

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1, d) %}

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) _ %}

sync-chunk(so)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) _ \
1 €mmmm e =3 >

sync-chunk(so)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) _ \
1 €mmmm e =3 >

sync-chunk(so)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) _ \
1 €mmmm e =3 >

sync-chunk(so)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) _ \
1 €mmmm e =3 >

sync-chunk(so)

s, = query-chunk(2, d)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) _ \

sync-chunk(so)

s» = query-chunk(2, d
sync—chunk(sl

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) | \
1 €mmmmm ooy N

sync-chunk(so)

II

s» = query-chunk(2, d
sync—chunk(sl

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Linear Probing: Querying Visualized

RDMA device Main memory
Initiator of target of target

so = query-chunk(0, d)
s1 = query-chunk(1l,d) | \
1 €mmmm e =3 >

sync-chunk(so)

s» = query-chunk(2, d
sync—chunk(sl

s3 = query-chunk(3, d)
sync-chunk(s;)

ss = query-chunk(4, d)
sync-chunk(ss)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 14 /20

Table of Contents

Experimental Evaluation

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

Hash Table: Evaluation

Experimental Setup

All experiments have been perfomed on the DAS-5 cluster:
m 66 machines
m 16 cores each (Intel E5-2630v3)
m 64 GB internal memory each
m connected via 48Gb/s Infiniband

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 16 / 20

Hash Table: Evaluation

Experimental Setup

All experiments have been perfomed on the DAS-5 cluster:
m 66 machines
m 16 cores each (Intel E5-2630v3)
m 64 GB internal memory each
m connected via 48Gb/s Infiniband

Benchmarks
Under different workloads, we measured:
m Throughput of find-or-put

m Latency of find-or-put

m Roundtrips of find-or-put

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 16 / 20

Hash Table: Throughput

Total Throughput Speedup

0
1.6e+008 140
1.6e+008 1.4e+008 120
1.4e+008 1.2e+008 100
1e+008 a0
5 1.2e+008 8e+007 N pos
2 lesdos 6e+007 < 40
2 ge+007 4e+007 2 a0
2 0007 2e+007 &
F e 0 0
4e+007

2e+007

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Mem August 31, 2015

Hash Table: Throughput

Total Throughput Speedup
QLS.
QR0 .
1.6e+008 o "!"0:':'0‘:\ e

1.2e+008
le+008
8e+007
6e+007
4e+007
2e+007

1.4e+008
1.2e+008
le+008
Be+007
6e+007
4e+007
2e+007
RRL:

Throughput
Speedup

Observations
m Throughputs up to 140 x 10° reached (66 machines)

m Remote speedup up to 110 obtained
m Local throughput of 495 x 10° reached (1 threads)

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015

Hash Table: Latency

latency (ns)

. . .
0.2 0.4 0.6 0.8
load-factor ()

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 18 / 20

Hash Table: Latency

Local latency

600

n

£ 500

>

z

5 400

300
012 014 016 018
load-factor ()
v
Remote latency
-10*
1F T— c=
7 44000 1 T oal = c 16
— 4,200 - — — C=32
> >
2 4000 | 2 o6l J|— C =64
3 2 C =128
& 3300 J ko
3600 ———— | O |
0.1 02 03 04 05 0.6 0.7 0.8 0.9
load-factor () load-factor (a)
v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 18 / 20

Table of Contents

Conclusion

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory gust 31, 2015 19 /20

Conclusions

m Minimizing roundtrips increases performance
m Overlapping queries reduces waiting-times and decreases latency

m Linear probing requires less roundtrips than Hopscotch and Cuckoo

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 20 / 20

Conclusions

General

m Minimizing roundtrips increases performance

m Overlapping queries reduces waiting-times and decreases latency

m Linear probing requires less roundtrips than Hopscotch and Cuckoo

v

Performance

m find-or-put takes 4.5us on average with & = 0.9 and C = 64
m Peak-throughput of 140 x 10° op/s obtained

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 20 / 20

Conclusions

General

m Minimizing roundtrips increases performance

m Overlapping queries reduces waiting-times and decreases latency

m Linear probing requires less roundtrips than Hopscotch and Cuckoo

v
Performance

m find-or-put takes 4.5us on average with a = 0.9 and C = 64
m Peak-throughput of 140 x 10° op/s obtained

N

Performance Indication
m FaRM: Inserts take ~ 3bus
m Pilaf: Operations take ~ 30us

m Nessie: Inserts take ~ 25us

v

Wytse Oortwijn (Formal Methods and Tools, A Distributed Hash Table for Shared Memory August 31, 2015 20 / 20

	Introduction
	Contribution 1: Resolving Hash Collisions
	Contribution 2: Hiding Latency
	Experimental Evaluation
	Conclusion

