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Distributed Hash Table

Main challenge

Building a fast and CPU-efficient shared hash table:

Minimal latency

Minimal memory overhead

Not relying on CPU-polling

Many use cases in HPC

Parallel graph searching

Distributed model checking

Distributed (LAN) vs Parallel

Cheaper scalability

Unlimited scalability, but

Performance overhead!

Efficient distributed processing

Specialized algorithms and data structures needed!

Contribution: Reducing roundtrips while CPU-efficient
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High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:

Comparable in price to Ethernet

Supports bandwidths up to 100 Gb/s

Direct access to memory via PCI-E bus

RDMA: Remote Direct Memory Access

Directly access to remote memory without invoking remote CPUs

Zero-copy networking

Kernel bypassing

No participation from remote CPUs

Performance: one-sided RDMA vs TCP

Roundtrips latency: < 3µs (Infiniband) vs 60µs (traditional Ethernet)
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Hash Table: Challenges

Notation: Hash table

T = 〈b0, . . . , bn−1〉 as a sequence of buckets bi , where:

n the hash table size and m the number of used entries

α = m
n the load factor

Operation: only find-or-put(d)

Takes a data element d as parameter, and:

if d ∈ T , return found

if d 6∈ T , insert d and return inserted

if d 6∈ T and d cannot be inserted, return full

Design: Challenges

How to distribute and access T = 〈b0, . . . , bn−1〉 efficiently?

How to design find-or-put to perform efficiently?
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PGAS: Partitioned Global Address Space

PGAS

t1 t2 . . .

. . .

tN

Hybrid PGAS

t1 t2 . . .

. . .

tN

Details

Assuming N participating threads:

PGAS: shared + distributed memory model

Hybrid PGAS: PGAS + message passing (dashed edges)
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Hash Collisions

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements x 6= y

Efficiency of find-or-put depends on hashing strategy!

Existing Work

Pilaf, 2014 (Cuckoo)

Nessie, 2014 (Cuckoo)

FaRM, 2014 (Hopscotch)

HERD, 2014 (CPU-intensive)

Contributions

Existing implementations either:

Require more roundtrips

Require locking schemes

Are CPU-intensive

Best strategy for find-or-put

Which strategy requires the least number of roundtrips?
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Comparing Hashing Strategies

Chained Hashing

+ Theoretical comp. Θ(1 + α)

- Dynamic mem. management

- Storing pointers

Hopscotch Hashing

+ Using neighbourhoods

+ Lookups require 1 roundtrip

- Relocations require locks

Cuckoo Hashing

+ Uses k hash functions

- Lookups require k roundtrips

- Relocations require locks

Linear Probing

+ Buckets are consecutive

+ No locking or relocations

- Roundtrips for lookups?

Linear Probing versus Hopscotch

Due to Hopscotch invariant, lookups may be more expensive, but

Inserts are arguably cheaper (amortized complexity)
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Linear Probing: Efficiency Bounds

Knuth, 1997

The expected number of buckets
to examine until the intended
buckets is found is at most:

1

2

(
1 +

1

(1− α)2

)

Efficiency bound

A chunk is expected to contain the
intended bucket if:

α ≤ 1−
√

1

2C − 1

Expected load-factor at which a chunk is full
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Linear Probing: Hiding Latency

Contribution: Asynchronous queries

Before chunk iteration, first request the next chunk:

Overlapping roundtrips with computational activity

Find next chunk with quadratic probing to prevent clustering

Defining query-chunk(i , d)

Obtains the i-th chunk, starting
from bucket bh(d)

Returns a handle s

Defining sync-chunk(s)

Takes a handle s as parameter,
waits until the corresponding query
has been completed.
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Linear Probing: Querying Visualized

Initiator
RDMA device

of target
Main memory

of target

s0 = query-chunk(0, d)
s1 = query-chunk(1, d)

sync-chunk(s0)

s2 = query-chunk(2, d)
sync-chunk(s1)

s3 = query-chunk(3, d)
sync-chunk(s2)

s4 = query-chunk(4, d)
sync-chunk(s3)

. . .
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Hash Table: Evaluation

Experimental Setup

All experiments have been perfomed on the DAS-5 cluster:

66 machines

16 cores each (Intel E5-2630v3)

64 GB internal memory each

connected via 48Gb/s Infiniband

Benchmarks

Under different workloads, we measured:

Throughput of find-or-put

Latency of find-or-put

Roundtrips of find-or-put
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Hash Table: Throughput

Total Throughput Speedup

Observations

Throughputs up to 140× 106 reached (66 machines)

Remote speedup up to 110 obtained

Local throughput of 495× 106 reached (1 threads)
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Hash Table: Latency

Local latency
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Conclusions

General

Minimizing roundtrips increases performance

Overlapping queries reduces waiting-times and decreases latency

Linear probing requires less roundtrips than Hopscotch and Cuckoo

Performance

find-or-put takes 4.5µs on average with α = 0.9 and C = 64

Peak-throughput of 140× 106 op/s obtained

Performance Indication

FaRM: Inserts take ∼ 35µs

Pilaf: Operations take ∼ 30µs

Nessie: Inserts take ∼ 25µs
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