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We are concerned with large scale Tikhonov Regularization (TR) problems. TR is the most commonly used method of regularization for inverse and ill-posed 
problems. There are numerous examples of ill posed problems in computational mathematics and applications. The issue we face here is to solve large scale 
inverse ill posed problems efficiently. Efficiency is achieved by virtue of designing computational models specifically to take full advantage of massively 
parallel computers and General Purpose Graphics Processing Units (GPGPUs). 
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1. The Tikhonov-Regularized (TR) formulation 

The TR problem can be described as following:

u(�) = argminuJ(u) = armingu

⇢
kHu� vk2R + �ku� uMk2B

�

where k·kR and k·kB denote the weighted norms with respect

to the error covariance matrices B and R and � is the

regularization parameter

4. Case Study: Data Assimilation problem 

DOMAIN	
  

Observations 

Let t 2 [0, T ] denote the time variable. Let utrue(t, x) be
the evolution state of a predictive system governed by
the mathematical model M with utrue(t0, x), t0 = 0 as
initial condition. Here we consider a 3D shallow water
model. Let v(t, x) = H(utrue(t, x)) denote the
observations mapping, where H is a given nonlinear
operator which includes transformations and
grid interpolations

Values of execution time of algorithm

running on GPU for a problem size O(10

7
)

Results on HA2: Values of TGPU

flop

and measured
scale-up factor compared with theoretical once

N p nproc TGPU

flop

(N)

O(10

7
) 1 2 0.144

2 4 0.044

4 8 0.025

8 16 0.024

N p TGPU

flop

(N)measuredS
nproc,2 Snproc,2

O(107) 1 0.127 - -
2 0.027 4.7 4
4 0.008 15.9 8
8 0.007 18.1 16

3. Performance Analysis – ScaleUp factor  

Let p1, p2 2 N and p1 < p2. Let T (A(!, pi)), i = 1, 2
denote the time complexity of A(!i, pi), i = 1, 2.8i 6= j
we define the (relative) scale-up factor of A(!, p2),
in going from p1 to p2, the following ratio:

If p 2 N , and p > 1, the algorithm associated to the

decomposition given is:

Sp2,p1(N) = T (A(⌦,p1))
(p2/p1)T (A(⌦,p2))

A(⌦, p) := A(⌦1),A(⌦2), . . . ,A(⌦p)| {z }
p times

5. Results 

n nproc Tnproc

(N) measuredS
nproc,8 Snproc,8

O(10

6
) 8 2.0545e+02 1.0 1

16 6.3316e+01 3.25 4

32 2.0005e+01 10.27 16

64 8.7835e+00 23.39 64

n nproc Tnproc

(N) measuredS
nproc,8 Snproc,8

O(10

7
) 8 - - -

16 3.9091e+03 1.0 1

32 9.9952e+02 3.91 4

64 2.7584e+02 14.17 16

Results obtained on HA1 for a problem size O(106) and O(107) by using #
thread-blocks = 2p

We consider two hybrid architectures: HA1 is a 288
CPU-multicores, HA2 is a GPU+CPU architecture

2. The decomposed TR formulation  

OVERLAPPING	
  

uDA
i = argminui{J/⌦i +O/⌦ij}

Let ⌦ 2 R3
be the domain decomposed into a sequence of

overlapping sub-domains ⌦i 2 R3
, such that:

⌦ =
pS

i=1
⌦i ⌦ ⇢ R3

The decomposed TR formulation:

6. Discussion 
We now discuss scalability results shown in the tables.

To this end, we introduce

which denotes the speed up of the (local) algorithm

A(D
N

(⌦

i

), N/p) for solving the local problem on

subdomain D
N

(⌦

i

). Let us express the measured

scale up factor in terms of sloc
nproc

. We have:

Smeasured

1,nproc = ↵S1,nproc

it comes out that

sloc
nproc

= T

flop

(N/p)
T

nproc

(N/p)

Smeasured

1,nproc = T

flop

(N)
pT

flop

(N/p)

s

loc

nproc

+pT

oh

(N/p)

↵ :=
snproc

loc

1+
s

loc

nproc

T

oh

(N/p)

T

flop

(N/p)

Finally, it is worth noting that in our experiments, on HA1,
local DA problems are sequentially solved, then sloc

nproc

= 1
and ↵ < 1, while on HA2, local DA problems have been
concurrently solved on the GPU device, so sloc

nproc

> 1 and
↵ > 1,thus the above analysis validates the experimental results


