
2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

How to mitigate node failures
in hybrid parallel applications

Maciej Szpindler
m.szpindler@icm.edu.pl

University of Warsaw
Interdisciplinary Centre for Mathematical

and Computational Modelling
http://www.icm.edu.pl

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Introduction

• Current state

• Problem definition

• Fault-recovery model

• Detection and reconstruction

• Summary

Agenda

2

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Parallel applications are usually multi-process
– Dominant model is message passing (MPI)

• Applications (in general) are likely multithreaded
– Dominant models are based on threads (eg. OpenMP)

– MPI model provides full support for threads

• In search for scalability these two models are coupled (hybrid
parallelism)
– Notable example: MPI+OpenMP – iter-node and intra-node connectivity

respectively

– Other approaches include MPI-3 shared memory model

– No fault tolerance is supported - must be provided on application level
(as for MPI in general)

Introduction and context

3

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Most HPC systems represent „cluster” class
– Many nodes, each with many cpus (cores)

– Inside one node many h-w components are shared

• Many failures have effect all node’s processes
– In case of h-w failure all cpus in a node are affected

• Hybrid parallel applications use process-per-node allocation
– In this case process failure means node failure

• Application recovery often requires node recovery

Motivation

4

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Many approaches without wider adoption

• User-Level Failure Mitigation (ULFM) proposal
– Proposal for the next MPI Standard version

– Set of MPI primitives to apply on application level

– Full description: https://svn.mpi-forum.org/trac/mpi-forum-
web/ticket/323

• Support for ULFM
– MPICH: almost complete in version 3.2 (pre-release)

– OpenMPI: dedicated ulfm-enabled branch

• More discussion on:
– http://fault-tolerance.org

Current state
fault-tolerance in MPI applications

5

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
http://fault-tollerance.org/
http://fault-tollerance.org/
http://fault-tollerance.org/

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Many approaches without wider adoption

• User-Level Failure Mitigation (ULFM) proposal
– Proposal for the next MPI Standard version

– Set of MPI primitives to apply on application level

– Full description: https://svn.mpi-forum.org/trac/mpi-forum-
web/ticket/323

• Support for ULFM
– MPICH: almost complete in version 3.2 (pre-release)

– OpenMPI: dedicated version ulfm-1.0 released

• More discussion on:
– http://fault-tolerance.org

Current state
update (September 2015)

6

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323
http://fault-tolerance.org/
http://fault-tolerance.org/
http://fault-tolerance.org/

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Node failure occurs with hybrid parallel application in a multi-
node runtime environment
– detect node failure,

– exclude failed processes,

– recover application (with additional node restarted).

• Desired approach:
– Distributed – do not involve global operations

– Independent of a total number of application processes (nodes used)

Problem definition

7

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• A set of primitives for application level

– Failure detection

– Failure notification

– Error propagation

– Communication recovery

• Common usage*

– Detect – Revoke – Shrink – Repair

• Repair stage
– Need to be provided on an application level

Fault tolerance model– ULFM

8

*Bland, Wesley, et al. "An evaluation of User-Level Failure Mitigation support in MPI."
Computing, 2013

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• MPI supports error handling with:
– MPI_ERRORS_ARE_FATAL error handler (default approach)

• Immediately terminates all MPI processes

– MPI_ERRORS_RETURN handler

• Allows proces-local operation before termination

• ULFM follows second approach
– Communication functions may raise:

• MPI_PROC_FAILED error code in case of participating process failure

• MPI_COMM_REVOKE in case of communicator being revoked

• Currently ULMF is an extension
– MPIX_[…] for MPICH, OMPI_[…] for OpenmMPI-ulfm

• Running ULMF based applications
– MPICH: mpiexec -disable-auto-cleanup …

– OpenMPI (specific builds only): mpiexec -am ft-enable-mpi …

Failure detection - ULFM

9

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Reconstruction (repair) in the ULMF model involves:
– Excluding failed processes – shrink operation

– Spawn new processes to replace failed ones (produce inter-
communicators)

– Merge inter-communicators

– Optionally restore original rank order (if necessary)

• Application state recovery need additional effort
– Recover process local state (at some point)

– Possible approaches*: checkpoints, memory redundancy

Communicator reconstruction

10

* Ali, Md Mohsin, et al. "Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver."
Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Single process failure (top)
– One of the communicator's

members fails

– Process local memory
vanishes

• Node failure (bottom)
– All node's processes are lost

– Node memory is lost

– Node communicator(if used)
is unreachable

– Common case for
MPI+OpenMP choice

Common scenarios

11

FAILED
PROCESS

FAILED NODE

CASE OF INTEREST

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Intra-node communicator is a reasonable choice
– Logical separation of intra-node synchronization and inter-node

communication

– Enable shared memory islands with MPI_COMM_SPLIT_TYPE (and
MPI-3 shared memory windows)*

• In case of node failure associated communicator is lost

Intra-node communitors

12

*Hoefler, Torsten, et al. "MPI+ MPI: a new hybrid approach to parallel programming with MPI plus shared
memory." Computing 95.12 (2013)

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• ULFM detection function operates on a given communicator
– Failed processes are eventually identified

• The most simple method is to test for process failures on
MPI_COMM_WORLD communicator
– This is not distributed approach (involves all processes in the worst

case)

– This will introduce huge overhead if called frequently

How to detect node failure?

13

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• First approach uses intercommunicators

• Intercommunicator connects two independent communicators: local
and remote group

• Proposed scheme

• Node intra-communicators (COMM1,COMM2,…) are arranged in a ring

• Each comm pair forms inter-communicator

• Each node can test its neighbor for failure using remote group of inter-
comm

Node failure detection – 1st approach

14

…

COMM1 COMM2 COMM3

INTERCOMM INTERCOMM INTERCOMM

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Each node probes failure only with remote group – no
global operations

• Remarks
– Not supported by MPICH ULFM prototype (as for version 3.2 beta)

– Seems to be broken in OpenMPI ULFM (as for 1.7 branch, ulfm-1.0 not
tested yet)

Node failure detection – 1st approach

15

…

COMM1 COMM2 COMM3

INTERCOMM INTERCOMM INTERCOMM

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• More complicated scheme without intercommunicators

• Still aims to behave in a distributed way

• Additional communicators required

• Each inter-node communicator delegates „leader” process

• Leaders form dedicated communicator

• Leaders communicator is probed for failures and propagates notification

Node failure detection – 2nd approach

16

…

LOCAL COMM REMOTE COMM

NODE1 NODE1

LEADERS COMM

LOCAL LEADER REMOTE LEADER

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Remarks
– More sophisticated scheme

– Additional communication between „leaders” processes

– If local leader fails (only) remaining local processes must agree on new
leader

– Works with existing ULFM implementations

Node failure detection – 2nd approach

17

…

LOCAL COMM REMOTE COMM

NODE1 NODE1

LEADERS COMM

LOCAL LEADER REMOTE LEADER

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Having failed (node) communicator identified one may need
to recover failed node

• Application processes need to be either restarted or
recovered

• Backup (checkpoint) of node-internal memory need to be
provided

• How to provide additional resources to swap failed nodes –
associated work (next slides)

How to recover failed node?

18

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Idea based on the Slurm job resize method

– Active allocation (already started job) is extended using
additional, dependent allocation

– Accessible from Slurm API

• Somehow inspired by dynalloc Slurm plugin (for hadoop??)

– PMI calls Slurm API functions to extend allocation

– It is a legal Slurm operation (no hacks)

• Eliminates need of pre-allocation or over-subscription of
processes in case of dynamic MPI application

Dynamic Resource Allocation

19

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• MPI (standard) do not define how to create new processes

• Process Management Interface* (PMI) – quasi standard

– v1 and v2, PMI3 (?)

– Abstract layer for inter-node process management

• Different implementations

– Hydra – MPICH process manager (pm)

– PMIx – OpenMPI effort (in development)

– Slurm

– Not necessarily compatible

MPI and PMI

20

* Balaji, Pavan, et al. "PMI: A scalable parallel process-management interface for extreme-scale systems."
Recent Advances in the Message Passing Interface, 2010

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• MPI: MPI_Comm_spawn[_multiple]

– API function, creates new processes

– No control over exact startup parameters

– Info argument theoretically passes additional
requirements

• PMI: MPI – PMI interaction

– With KVS pairs (key, value)

– Parsed from MPI_Info structure

– Comm_spawn is realized by PMI_Spawn

• Slurm:

– Initializes slurm step and actually start process

Dynamic process creation cascade

21

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• In reality, additional resources are not immediately
available

– Might be not practical for a range of applications

– Blocking and non-blocking resource allocation if waiting is
acceptable

– Immediate allocation mode in the other case

Resource allocation modes

22

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Blocking mode
– Blocking mode returns control if resources are already allocated or

given timeout reached (uses Slurm blocking API)

• Non-blocking mode
– Most elegant option: MPI_Icomm_spawn + Wait (with Slurm callbacks)

– Considered in the past by the MPI Forum as MPI extension*, but
eventually dropped

– Implementation is hard due to complicated MPI progress engine

– Most practical: use helper thread for allocation, easy to implement

• Immediate mode
– Returns extended allocation if resources are available immediately or

raise an error

– Uses Slurm allocation constraints

Resource allocation modes cont.

23

* Nonblocking Process Creation and Management Operations, MPI-Forum ticket
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/Async-proc-mgmt

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• All experiments in immediate
mode

• Single process failure
– Dynamic allocation on the local

node (upper figure)

• Node failure
– Dynamic allocation of the

remote node (lower)

– Detection costs negligible
(comparing to reconstruction
costs)

• Significant costs
– MPI_Comm_Spawn is costly*

– Order of magnitude slower is
remote allocation

Results

25

Relative cost of the spawn and allocate operations for
increasing number of processes (N-M: number of parents
and children)

Time cost in seconds of the spawn with remote node
allocation. Note the logarithmic scale. * Bland, Wesley, et al. "An evaluation of User-Level

Failure Mitigation support in MPI." Computing , 2013

1-1 2-2 4-4 8-8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alloc

spawn

1 2 4

0,1

1

10

100
spawn alloc

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Resource allocation time with Slurm highly dependent on
the machine state (at least on the computer tested)

• Technical details

– MPICH – easier PMI integration but lack of ULFM support for
inter-communicators (v. 3.2a2)

– OpenMPI – more ULFM supported but not in the mainline code,
specific process manager, PMIx not integrated with distribution

– Slurm memory management caused problems with hydra
(MPICH)

• PMIx integration in progress

Results - technicalities

26

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2015, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Node failure mitigation
– Common approach with ULFM model described

– Node failure detection addressed

– Efficient (scalable) approaches for detection described

• Dynamic resource allocation
– Dynamic resource allocation for MPI with Slurm shown

– Basic integration with MPICH implemented

– Practical usage for ULFM based application recovery demonstrated

Summary

27

