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• Parallel applications are usually multi-process  
– Dominant model is message passing (MPI) 

• Applications (in general) are likely multithreaded 
– Dominant models are based on threads (eg. OpenMP) 

– MPI model provides full support for threads 

• In search for scalability these two models are coupled (hybrid 
parallelism) 
– Notable example: MPI+OpenMP – iter-node and intra-node connectivity 

respectively 

– Other approaches include MPI-3 shared memory model 

– No fault tolerance is supported - must be provided on application level 
(as for MPI in general) 
 

Introduction and context 
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• Most HPC systems represent „cluster” class 
– Many nodes, each with many cpus (cores) 

– Inside one node many h-w components are shared 

• Many failures have effect all node’s processes 
– In case of h-w failure all cpus in a node are affected 

• Hybrid parallel applications use process-per-node allocation 
– In this case process failure means node failure 

• Application recovery often requires node recovery 

 

Motivation 
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• Many approaches without wider adoption 

• User-Level Failure Mitigation (ULFM) proposal 
– Proposal for the next MPI Standard version 

– Set of MPI primitives to apply on application level 

– Full description: https://svn.mpi-forum.org/trac/mpi-forum-
web/ticket/323 

• Support for ULFM 
– MPICH: almost complete in version 3.2 (pre-release) 

– OpenMPI: dedicated ulfm-enabled branch 

• More discussion on: 
– http://fault-tolerance.org 

 

 
 

Current state 
fault-tolerance in MPI applications  
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– Proposal for the next MPI Standard version 

– Set of MPI primitives to apply on application level 

– Full description: https://svn.mpi-forum.org/trac/mpi-forum-
web/ticket/323 

• Support for ULFM 
– MPICH: almost complete in version 3.2 (pre-release) 
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Current state 
update (September 2015) 
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• Node failure occurs with hybrid parallel application in a multi-
node runtime environment  
– detect node failure, 

– exclude failed processes, 

– recover application (with additional node restarted). 

• Desired approach: 
– Distributed – do not involve global operations 

– Independent of a total number of application processes (nodes used) 

 

Problem definition 
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• A set of primitives for application level 

– Failure detection 

– Failure notification 

– Error propagation 

– Communication recovery 

• Common usage* 

– Detect – Revoke – Shrink – Repair 

• Repair stage 
– Need to be provided on an application level 

Fault tolerance model– ULFM 
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*Bland, Wesley, et al. "An evaluation of User-Level Failure Mitigation support in MPI."  
Computing, 2013 
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• MPI supports error handling with: 
– MPI_ERRORS_ARE_FATAL error handler (default approach) 

• Immediately terminates all MPI processes 

– MPI_ERRORS_RETURN handler 

• Allows proces-local operation before termination 

• ULFM follows second approach 
– Communication functions may raise: 

• MPI_PROC_FAILED error code in case of participating process failure 

• MPI_COMM_REVOKE in case of communicator being revoked 

• Currently ULMF is an extension 
– MPIX_[…] for MPICH, OMPI_[…] for OpenmMPI-ulfm 

• Running ULMF based applications 
– MPICH:     mpiexec -disable-auto-cleanup … 

– OpenMPI (specific builds only):  mpiexec -am ft-enable-mpi … 

Failure detection - ULFM  
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• Reconstruction (repair) in the ULMF model involves: 
– Excluding failed processes – shrink operation 

– Spawn new processes to replace failed ones (produce inter-
communicators) 

– Merge inter-communicators 

– Optionally restore original rank order (if necessary) 

• Application state recovery need additional effort 
– Recover process local state (at some point) 

– Possible approaches*: checkpoints, memory redundancy 

Communicator reconstruction 
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* Ali, Md Mohsin, et al. "Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver."  
Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 
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• Single process failure (top) 
– One of the communicator's 

members fails 

– Process local memory 
vanishes 

• Node failure (bottom) 
– All node's processes are lost 

– Node memory is lost 

– Node communicator(if used) 
is unreachable 

– Common case for 
MPI+OpenMP choice 

Common scenarios 
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• Intra-node communicator is a reasonable choice 
– Logical separation of intra-node synchronization and inter-node 

communication 

– Enable shared memory islands with MPI_COMM_SPLIT_TYPE  (and 
MPI-3 shared memory windows)* 

• In case of node failure associated communicator is lost 

 

Intra-node communitors 
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*Hoefler, Torsten, et al. "MPI+ MPI: a new hybrid approach to parallel programming with MPI plus shared 
memory." Computing 95.12 (2013) 
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• ULFM detection function operates on a given communicator 
– Failed processes are eventually identified 

• The most simple method is to test for process failures on 
MPI_COMM_WORLD communicator 
– This is not distributed approach (involves all processes in the worst 

case) 

– This will introduce huge overhead if called frequently 

How to detect node failure? 
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• First approach uses intercommunicators 

• Intercommunicator connects two independent communicators:  local 
and remote group 

• Proposed scheme 

 

 

 

 

 

 

• Node intra-communicators (COMM1,COMM2,…) are arranged in a ring 

• Each comm pair forms inter-communicator 

• Each node can test its neighbor for failure using remote group of inter-
comm 

 

 

Node failure detection – 1st approach 
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• Each node probes failure only with remote group – no 
global operations 

• Remarks 
– Not supported by MPICH ULFM prototype (as for version 3.2 beta) 

– Seems to be broken in OpenMPI ULFM (as for 1.7 branch, ulfm-1.0 not 
tested yet) 

Node failure detection – 1st approach 
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• More complicated scheme without intercommunicators 

• Still aims to behave in a distributed way 

• Additional communicators required 

 

 

 

 

 

 

 

• Each inter-node communicator delegates „leader” process 

• Leaders form dedicated communicator 

• Leaders communicator is probed for failures and propagates notification 

Node failure detection – 2nd approach 
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• Remarks 
– More sophisticated scheme 

– Additional communication between „leaders” processes 

– If local leader fails (only) remaining local processes must agree on new 
leader 

– Works with existing ULFM implementations 

Node failure detection – 2nd approach 
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• Having failed (node) communicator identified one may need 
to recover failed node 

• Application processes need to be either restarted or 
recovered 

• Backup (checkpoint) of node-internal memory need to be 
provided 

• How to provide additional resources to swap failed nodes – 
associated work (next slides) 

 

How to recover failed node? 
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• Idea based on the Slurm job resize method 

– Active allocation (already started job) is extended using 
additional, dependent allocation 

– Accessible from Slurm API 

• Somehow inspired by dynalloc Slurm plugin (for hadoop??) 

– PMI calls Slurm API functions to extend allocation 

– It is a legal Slurm operation (no hacks) 

• Eliminates need of pre-allocation or over-subscription of 
processes in case of dynamic MPI application 

Dynamic Resource Allocation 
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• MPI (standard) do not define how to create new processes  

• Process Management Interface* (PMI) – quasi standard  

– v1 and v2, PMI3 (?) 

– Abstract layer for inter-node process management 

• Different implementations 

– Hydra – MPICH process manager (pm) 

– PMIx – OpenMPI effort (in development) 

– Slurm 

– Not necessarily compatible 

MPI and PMI 
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* Balaji, Pavan, et al. "PMI: A scalable parallel process-management interface for extreme-scale systems."  
Recent Advances in the Message Passing Interface, 2010 
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• MPI: MPI_Comm_spawn[_multiple] 

– API function, creates new processes 

– No control over exact startup parameters 

– Info argument theoretically passes additional 
requirements 

• PMI: MPI – PMI interaction 

– With KVS pairs (key, value) 

– Parsed from MPI_Info structure 

– Comm_spawn is realized by PMI_Spawn 

• Slurm: 

– Initializes slurm step and actually start process 

Dynamic process creation cascade 
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• In reality, additional resources are not immediately 
available 

– Might be not practical for a range of applications 

– Blocking and non-blocking resource allocation if waiting is 
acceptable 

– Immediate allocation mode in the other case 

Resource allocation modes 
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• Blocking mode 
– Blocking mode returns control if resources are already allocated or 

given timeout reached (uses Slurm blocking API) 

• Non-blocking mode 
– Most elegant option: MPI_Icomm_spawn + Wait (with Slurm callbacks) 

– Considered in the past by the MPI Forum as MPI extension*, but 
eventually dropped 

– Implementation is hard due to complicated MPI progress engine 

– Most practical: use helper thread for allocation, easy to implement 

• Immediate mode 
– Returns extended allocation if resources are available immediately or 

raise an error 

– Uses Slurm allocation constraints 

Resource allocation modes cont. 
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* Nonblocking Process Creation and Management Operations, MPI-Forum ticket 
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/Async-proc-mgmt 
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• All experiments in immediate 
mode 

• Single process failure 
– Dynamic allocation on the local 

node (upper figure) 

• Node failure 
– Dynamic allocation of the 

remote node (lower) 

– Detection costs negligible 
(comparing to reconstruction 
costs) 

• Significant costs 
– MPI_Comm_Spawn is costly* 

– Order of magnitude slower is 
remote allocation   

Results 
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Relative cost of the spawn and allocate operations for 
increasing number of processes (N-M: number of parents 
and children) 

Time cost in seconds of the spawn with remote node 
allocation. Note the logarithmic scale. * Bland, Wesley, et al. "An evaluation of User-Level 

Failure Mitigation support in MPI." Computing , 2013 
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• Resource allocation time with Slurm highly dependent on 
the machine state (at least on the computer tested) 

• Technical details 

– MPICH – easier PMI integration but lack of ULFM support for 
inter-communicators (v. 3.2a2) 

– OpenMPI – more ULFM supported but not in the mainline code, 
specific process manager, PMIx not integrated with distribution  

– Slurm memory management caused problems with hydra 
(MPICH) 

• PMIx integration in progress 

Results - technicalities 
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• Node failure mitigation 
– Common approach with ULFM model described 

– Node failure detection addressed 

– Efficient (scalable) approaches for detection described 

• Dynamic resource allocation 
– Dynamic resource allocation for MPI with Slurm shown 

– Basic integration with MPICH implemented 

– Practical usage for ULFM based application recovery demonstrated 

Summary 
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