PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W dos Santo and Marce Lobosco

Introduction Related Work HCM

Model Evaluatio

Conclusion

Evaluation of HCM: a new model to predict the execution time of regular parallel applications on a heterogeneous cluster

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Federal University of Juiz de Fora

10-13 September, 2017

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and **Marcele** Lobosco

Introduction Related Work HCM

Model Evaluatio

Conclusion

1 Introduction

2 Related Works

3 HCM

4 Model Evaluation

5 Conclusion

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Motivation

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction

- Related Works
- НСМ
- Model Evaluatior
- Conclusion

- Clusters are becoming heterogeneous
 - Some of them mix distinct processors, accelerators, and network connections
 - AMD, Intel, Fermi, Tesla, Ethernet, Infiniband in a single system
- To explore simultaneously all the resources available in such a heterogeneous platform, a data-parallel application must divide its data across multiple devices
 - Distinct processing power of devices and the distinct latencies of the networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Which configuration leads to the best speedup?

Contribution

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction

- Related Works
- нсм
- Model Evaluatio
- Conclusion

- Present HCM (Heterogeneous Cluster Model), a new parallel model that estimates the execution time of applications running on heterogeneous clusters
 - Extends some characteristics of our previous model
 - The idea is to use the results of this estimation to predict the configuration that leads to the best speedup
 - Taking into account not only the processing power of each processor and accelerator, but also the communication costs.

Related works

PPAM'17, Lublin, Poland

- Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco
- Introduction Related Works
- Model Evaluation
- Conclusion

Lastovetsky et alli

- Heterogeneous processors interconnected by an Ethernet-based network
 - Single network type

HLoGP model

- Takes into account the heterogeneity of both computation and communication resources
- Large number of parameters is an issue
- This work proposes a simpler model that predicts the execution time of regular parallel applications on small clusters
 - Regardless of the computational environment used, homogeneous or heterogeneous one.

Heterogeneous Cluster Model

- Thiago Marques Soares, Rodrigo W dos Santos and Marcel Lobosco
- Introduction Related Work

нсм

Model Evaluation

Conclusion

 Considers that execution is composed by two phases: computation and communication

All devices can be used, simultaneously, in the computation

Heterogeneous Cluster Model

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Works

нсм

Model Evaluatior

Conclusion

- Steps to estimate the execution time of a regular application
 - Parameters and variables are used to describe mathematically the computation and communication phases of an application

- Collect time spent in one of the computational platforms to execute a small number of sequential steps
- Collect parameters from the heterogeneous environment

Estimating the computation time

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work

НСМ

Model Evaluatior

Conclusion

Parameter and variables used:

- R_P, the relative computing power of a processing unit;
- **size**, the size of the problem;
- **I**, the total number of iterations.
- The value of R_P can be collected once, running a benchmark on the new processor/accelerator that is been included in the environment.

Estimating the computation time

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work

нсм

Model Evaluatio

Conclusion

$$T_{computation} = \frac{I}{I_s} \times \left(\frac{T_s}{Sum_{Rp} + F_r}\right) \tag{1}$$

- I, the total number of iterations;
- *I_s*, number of sequential iterations that will be used to predict the computation time of the application;
- T_s , time to execute ls;
- Sum_{Rp} , sum of R_p for all processors that will be used in the parallel execution
- F_r , a correction factor

Estimating the communication time

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work

нсм

Model Evaluatio

Conclusion

Propose the use of a modified version of the LogP model

- **P**, the number of processing units used;
- **L**_d represents an upper bound on the communication latency of a device d;
- **o**_d represents the overhead in device d
- g_d represents the minimum time interval between consecutive message transmissions/receptions by a processor in a device d (gap)
- N_{op} represents the number of communication operations per iteration, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

M represents the message size.

Estimating the communication time

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work

Model

Conclusior

- The communication time depends on the type of message sent (point-to-point or collective) and the message size.
- The cost of a single message is equal to

$$T_{Single(Send/SendReceive)} = N_{op} \times (L_d + \frac{M}{B_d} + o_d).$$
⁽²⁾

- The cost of all-to-all communication pattern is equal to $T_{AlltoAll} = N_{op} \times (P-1) \times (L_d + \frac{M}{B_d} + o_d). \tag{3}$
 - The cost of all reduce communication pattern is equal to $T_{AllReduce} = N_{op} \times log_2 P \times (L_d + \frac{M}{B_d} + o_d). \tag{4}$

Estimating the communication time

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W dos Santos and **Marcel Lobosco**

Introduction Related Work

НСМ

Model Evaluation

Conclusion

- How to measure the values of the latency (\mathbf{L}_d) , gap (\mathbf{g}_d) and overhead (\mathbf{o}_d) ?
 - Network benchmark is used for this purpose
 - Benchmark is executed for each type d of network that is available
 - Collects their values for distinct message sizes, ranging from 0 to 4MB

Estimating the computation and communication time

- PPAM'17, Lublin, Poland
- Thiago Marques Soares, Rodrigo W dos Santos and Marcele Lobosco

Introduction Related Work

НСМ

Model Evaluation

Conclusion

 Use of benchmarks to collect the communication costs, overheads, as well as the relative performance of the processors and accelerators, can be executed only once

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Each time a new hardware or network is included in the system

Model Evaluation

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work HCM

Model Evaluation

Conclusion

- NAS benchmark were used in the initial validation of the model
 - Benchmarks were developed to execute in a CPU environment
- HIS (human immune system) simulator was chosen to evaluate the model on a hybrid environment

Uses GPUs and CPUs simultaneously

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Woi

нсм

Model Evaluation

Conclusion

Algorithm 1 Integer Sort

- 1: for i=1; i<=i; i++ do
- 2: generate sequence of rand numbers and subsequent keys on all processors ...
- 3: get the bucket size for the entire problem using MPI_Allreduce ...
- 4: determine the redistribution of keys ...
- 5: redistribute using MPI_AlltoAll ...
- 6: send the keys to the respective processors using MPI_Alltoallv ...
- 7: determine total # of keys on all other processors using MPI_Send_Receive ...

8: end for

 $T_{total} = T_{computation} + I \times (T_{AllReduce} + T_{AlltoAll} + T_{SendReceive})$ (5)

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Wor

НСМ

Model Evaluation

Conclusion

Algorithm 2 Conjugate Gradient

1: for i=1; i<=I; i++ do

- 2: calls the conjugate gradient routine:
 - 3: obtain rho with a sum-reduce using MPI_Send ...
 - sum the partition submatrix-vec A.z's across rows using MPI_Send ...
 - 5: exchange pieces of q using MPI_Send ...
- 6: normalize z to obtain x ...

7: end for

4:

$$T_{total} = T_{computation} + I \times T_{single}$$

・ロト・西ト・田・・田・ シック

(6)

HIS

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Worl HCM

Model Evaluation

Conclusion

Algorithm 3 HIS

1: **main**

- 2: define the mesh slice to be computed by each GPU/CPU ...
- 3: initialize submeshes according to their initial conditions
- 4: for t=1; t<=l; t++ do
- 5: call the functions/kernels in order to compute the PDEs ...
- 6: use MPI_Isend and MPI_Receive to exchange boundaries between machines ...
- 7: synchronize all machines . . .
- 8: end for

9: end-main

$$T_{total} = T_{computation} + I \times T_{single}$$

(7)

Experimental environment

PPAM'17, Lublin, Poland

- Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco
- Introduction Related Work HCM

Model Evaluation

Conclusion

Sixteen machines

- Two distinct CPUs
 - Intel *E*5620 dual quad-core processors
 - AMD 6272 dual sixteen-core processors

- One process per machine
- Three distinct GPUs
 - Tesla C1060
 - Tesla M2050
 - Tesla M2075
- Two distinct networks
 - Gigabit ethernet
 - InfiniBand

Parameters

PPAM'17, Lublin, Poland

- Thiago Marques Soares, Rodrigo W. dos Santos and Marcele Lobosco
- Introduction Related Work HCM

Model Evaluation

Conclusion

Table: Values of R_P for each processing unit available in the computational platform.

Processing unit	R_P
AMD	1
INTEL	1.78
C1060	131.22
M2050	299.34
M2075	333.73
M2090	364.41

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Results

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work HCM

Model Evaluation

Conclusion

Table: Results for HIS using both GPUs and CPUs and Ethernet network. All times in seconds. Both absolute and percentage errors are presented. Configuration number 1: 2 CPUs (1 AMD and 1 Intel) and 2 GPUs (M2075 and C1060). Configuration number 2: 3 CPUs (1 AMDs and 2 Intels) and 3 GPUs (1 M2075 and 2 C1060). Configuration number 3: 7 CPUs (3 AMDs and 4 Intels) and 7 GPUs (3 M2075, 2 M2050 and 2 C1060).

Configuration $\#$	Measured	Estimated	Error
1	47.2	51.2	4.0/8.6%
2	57.4	57.4	0.0/0.0%
3	107.8	95.1	12.7/11.8%

Results

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work HCM

Model Evaluation

Conclusion

Table: Results for the NAS benchmark using 8 AMD processors on two distinct network cards. All times are in seconds. Both absolute and percentage errors are presented. BT and SP require a square number of processors, and executed in 9 nodes.

	Ethernet			Infiniband		
	Measured	Estimated	Error	Measured	Estimated	Error
FT	73.8	68.7	5.1/6.9%	23.9	21.7	2.2/9.0%
IS	10.0	9.6	0.4/3.4%	3.4	3.3	0.1/5.4%
CG	150.3	169.2	18.9/12.6%	70.5	77.9	7.4/10.5%
MG	38.2	42.3	4.1/10.6%	23.3	25.1	1.8/7.4%
EP	71.3	74.0	2.7/3.8%	71.2	74.0	2.8/3.9%
LU	77.0	74.7	2.3/3.0%	62.0	57.2	4.8/7.7%
BT*	371.1	340.5	30.6/8.3%	294.7	264.5	30.2/10.2%
SP*	309.0	334.9	25.9/8.4%	238.7	266.5	27.8/12.7%

Results

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco

Introduction Related Work HCM

Model Evaluation

Conclusion

Table: Results for the NAS benchmark using 16 processors (8 Intel and 8 AMD) and Ethernet. All times are in seconds. Both absolute and percentage errors are presented.

Measured	Estimated	Error
65.7	61.3	4.4/6.7%
4.9	4.5	0.4/7.8%
262.5	253.7	8.8/3.2%
51.8	46.1	5.7/11.1%
28.5	27.6	0.9/3.2%
62.7	57.9	4.8/7.4%
245.8	259.5	13.7/5.5%
343.2	305.1	38.1/11.1%
	Measured 65.7 4.9 262.5 51.8 28.5 62.7 245.8 343.2	MeasuredEstimated65.761.34.94.5262.5253.751.846.128.527.662.757.9245.8259.5343.2305.1

Conclusion

PPAM'17, Lublin, Poland

- Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco
- Introduction Related Worl HCM
- Model Evaluation
- Conclusion

- HCM: a new model to predict the execution time of regular parallel applications on a small heterogeneous parallel environments.
- HCM can predict the total computation time of applications with distinct characteristics, running on distinct devices and interconnected by different network types
- Errors found during the estimation of the total execution time ranged from 0% to 12.7% in all experiments

PPAM'17, Lublin, Poland

Thiago Marques Soares, Rodrigo W. dos Santos and Marcele Lobosco

Introduction Related Work HCM

Model Evaluation

Conclusion

- Evaluate the model with more applications
- Use the model to choose the data partition and work assignment that minimizes the execution time of an application

Already Done!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thank you!

PPAM'17, Lublin, Poland

- Thiago Marques Soares, Rodrigo W. dos Santos and Marcelo Lobosco
- Introduction Related Work HCM
- Model Evaluatior
- Conclusion

We have two open positions for visiting professors!

