
An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory
systems
Dominic E. Charrier, Tobias Weinzierl

With the advent of manycore systems, shared memory parallelisation has gained importance in high performance

computing. Once a code is decomposed into tasks or parallel regions, it becomes crucial to identify reasonable

grain sizes, i.e. minimum problem sizes per task that make the algorithm expose a high concurrency at low

overhead. Many papers do not detail what reasonable task sizes are, and consider their findings craftsmanship not

worth discussion. We have implemented an autotuning algorithm, a machine learning approach, for a project

developing a hyperbolic equation system solver. Autotuning here is important as the grid and task workload are

multifaceted and change frequently during runtime. In this paper, we summarise our lessons learned. We infer

tweaks and idioms for general autotuning algorithms and we clarify that such a approach does not free users

completely from grain size awareness.

An experience report on (auto-)tuning of
mesh-based PDE solvers on shared memory
systems
PPAM17
September 2017

The project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 671698 (ExaHyPE).

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 1 / 24

An Exascale Hyperbolic PDE Engine

I One simulation engine
Similar to a 3D game engine

I Enable groups to write an exascale code within a year
No extreme scale expertise required but some HPC affinity

I Two grand challenges
Seismic risk assessment and gravitational waves

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 2 / 24

Software architecture and usage

I First-order hyperbolic PDEs
∂t u +∇ · F +

∑
i Bi

∂u
∂xi

= S

I ADER-DG with Finite Volumes limiter on
adaptive Cartesian meshes

I User code focuses on model/math
“What” is done not “how”

I User code integration and generation of
tailored kernels via precompiler
Vectorisation and shared memory efficiency

I Architecture provides efficiency and parallelism
MPI+TBB / MPI+OpenMP / MPI+TBB+CUDA

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 3 / 24

Example: Solving the Euler equations

I Compressible Euler equations in conservation form:

∂t

ρj
E

+∇ ·

 j
1
ρ

j⊗ j + p · I
1
ρ

(E + p) · j

 = 0, p = (γ − 1) ·
(

E − 0.5
1
ρ

j · j
)

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 4 / 24

ADER-DG with a-posteriori limiting

I Algorithmic steps (tasks):

STP Cellwisely solve implicit problem via Picard iterations:∫
I

∫
K (∂t qh +∇ · F) ϕh dxdt = 0

Riemann Facewisely determine numerical normal flux G(qh
+, qh

−)n

Update Cellwisely evolve using volume and face integral contributions:

(Dh, vh)K = − (F(qh),∇vh)(K×I) +
(
G(qh

+, qh
−)n, vh

)
(∂K×I)

I Further tasks may be introduced
Non-physical oscillations are cured a-posteriori with robust FV

Calculation of time step size

I Facewise Riemann solves synchronise neighbouring cells
I Update plus STP are embarrassingly concurrent

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 5 / 24

Challenges

I Runtime of some tasks varies
Cell solution is evolved using ADER-DG or FV

STP Picard iterations differ from cell to cell

I Changing task dependency patterns
Dynamic adaptive mesh refinement

Solution recomputation with FV

I Tasks have different characteristics
Bandwidth-bound vs. compute-bound

I Machine, PDE, and approximation
quality change task characteristics

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 6 / 24

Outline

ExaHyPE
An autotuning algorithm
Implementation and usage pitfalls
Using and integrating autotuning
Computational evidence
Summary

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 7 / 24

An autotuning algorithm

I Central instance (singleton) Oracle
manages database

I Code runs through grid notifies
Oracle about code section it is about
to enter plus problem size N

I Oracle returns GrainSize instance.
GrainSize can be configured to return
measured lifetime upon destruction

I Using GrainSize objects enables to
work with nested parallel sections

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 8 / 24

Recorded data

I Database record:

codeSection identifier for the code section (key)

Nmax maximum problem size associated with codeSection

g grain size used for this problem (g = Nmax means that
parallelisation does not pay off)

∆g delta w.r.t the previous g (g + ∆g < Nmax)

ts serial runtime (runtime without any parallelisation)

tg runtime using (current) g

I Oracle adds new entry every time no record is found for code section or N > Nmax

I Grain size g is initialised as either g = N/2 or N/p for p threads
Initial guess depends on N itself (see next slide)

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 9 / 24

Performance model

I We extend Amdahl’s law by task administration overhead h ∝ p:

tg = (1− f̂) ·
ts

min
(⌊

N
g

⌋
, p
) + f̂ · ts + h ·

⌈
N
g

⌉
with f̂ = f +

N mod g
N

(1− f)

f ∈ [0, 1] : genuinely serial code sections

⇒ Model motivates initial choice of g = N
2 for small N (left: N = 8) and g = N

p for
large N (right: N = 64)

1 2 3 4 5 6 7
Grain size

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o
rm

a
lis

e
d
 t

im
e

problem size N=8, spawn C=0.1, serial fraction f=0.1

2 cores

4 cores

8 cores

16 cores

72 cores

0 10 20 30 40 50 60
Grain size

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
lis

e
d

 t
im

e

problem size N=64, spawn C=0.01, serial fraction f=0.2

2 cores

4 cores

8 cores

16 cores

72 cores

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 10 / 24

Algorithmic idea

Finding minima by interval halving

0 10 20 30 40 50 60
Grain size

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
lis

e
d
 t

im
e

problem size N=64, spawn C=0.01, serial fraction f=0.2

2 cores

4 cores

8 cores

16 cores

72 cores

Performance model for N = 64

I Autotuning algorithm works with
“omni-present” parallelisation

I Parallelisation is turned off where it
does not pay off

I Search good grain sizes g only for
remaining code sections, e.g. by
interval halving
Shrink g with steps ∆g until runtime rises again

Then, fall back to previous g and use ∆g/2

I Frequent restarts for avoiding local
minima

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 11 / 24

Outline

ExaHyPE
An autotuning algorithm
Implementation and usage pitfalls
Using and integrating autotuning
Computational evidence
Summary

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 12 / 24

Taking timings

I Timings are subject to noise. Oracle thus tracks averaged times 〈tg〉
I New timing tg for code section is valid if |〈tg〉new − 〈tg〉old | < ε

Implementation pitfall (Linux timer invocation overhead)
Linux timer invocations come with overhead which quickly pollutes timings

⇒ Perform measurements only in one code section per grid sweep

Implementation pitfall (Measuring the serial runtime first)
I All timings have to converge subject to ε.
I If we determine ts first, it takes a long time until any parallelisation is enabled

at all. This is not acceptable in HPC

⇒ Randomise grain size choice whenever measurements for section are taken
One out of Nmax

g samples measure serial runtime ts
Otherwise, tg is measured

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 13 / 24

Binning

Usage pitfall (Directly extrapolate grain sizes to larger problems)
For our use-case, we cannot assume a linear relationship between g and N.

⇒ Track good grain sizes per problem size. We use a binning approach

I If we encounter new code section (with size N), we initialise bins

21 <Nmax ≤ 22

22 <Nmax ≤ 24

...

2k−1 <Nmax,N ≤ 2k

I If next smaller bin exists, we initialise newly added “larger” bin with extrapolated g

I If “small” bin converged, we extrapolate its g to all not yet converged “larger” ones

We list five more pitfalls in our paper. . .

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 14 / 24

Outline

ExaHyPE
An autotuning algorithm
Implementation and usage pitfalls
Using and integrating autotuning
Computational evidence
Summary

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 15 / 24

History vs. context

Observation (Context-aware autotuning is mandatory)
I Our code reacts sensitively to machine type, core count, input data sets
I Some problem setups perform poorly with autotuning settings derived for

others

⇒ Perform autotuning searches per problem setup

⇒ Don’t use central database for all setups

Observation (Accuracy improves over time)
The more samples, the more reliable the measurement data

⇒ Per problem, we store/load autotuning parameters after/before each simulation
We persist the database

I Simulations can continue learning or apply loaded parameters

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 16 / 24

Autotuning for large HPC runs

Observation (Autotuning is problematic for large HPC runs)

It is important to search autotuning parameters on target machine.
However, it is problematic to obtain such parameters for large HPC runs:

I Autotuning runs temporarily into inefficient parameter choices

I Autotuning overhead must be multiplied by number of nodes

I Single-node parameter studies might be deemed unsuitable

⇒ We thus augment our binning. We run small-scale, yet characteristic runs briefly,
and extrapolate reasonable grain sizes to large production runs

⇒ We sacrifice only a single node per experiment to perform the parameter search
The node dumps its new knowledge into the parameter file

Other nodes read from the file at startup

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 17 / 24

Outline

ExaHyPE
An autotuning algorithm
Implementation and usage pitfalls
Using and integrating autotuning
Computational evidence
Summary

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 18 / 24

Computational evidence

I Compared autotuning strategies:

autotuning-with-finest runs the autotuning strategy without taking
existing records into account

autotuning-from-coarse-grid runs cascade of autotuning experiments.
Learns on more and more finer meshes

autotuning-from-coarse-grid-without-learning Takes the final dump
of autotuning-from-coarse-grid and runs with learning
switched off

I We further compare against:

serial provides the baseline and normalises runtimes
dummy manually tuned for good results

I Haswell Xeon E5-2697 with 28 cores and 2.6 GHZ base clock
I Implementation relies on Intel’s TBB

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 19 / 24

A smooth solution of the Euler equations

Low approximation order & arithmetic intensity High approximation order & arithmetic intensity

I We employ pure ADER-DG (grid is uniform)
I Autotuning works from first iteration on
I with-finest-grid suffers from runtime spikes
I from-coarse-grid vs without-learning shows price for sliding updates of ts
I Cascading removes spikes however might yield suboptimal results (right plot)

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 20 / 24

A discontinuous solution of the Euler equations

Low approximation order & arithmetic intensity High approximation order & arithmetic intensity

I ADER-DG is now coupled to FV (grid is uniform)
Serial runtime is now very dynamic, too

I Mostly similar individual behaviour of strategies
I from-finest-grid struggles for low order solve
I Other strategies seem more robust

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 21 / 24

Outline

ExaHyPE
An autotuning algorithm
Implementation and usage pitfalls
Using and integrating autotuning
Computational evidence
Summary

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 22 / 24

Summary

I We proposed a blackbox autotuning strategy for codes with omni-present
parallelisation

I Our algorithm turns off parallelisation first where it does not pay off.
It tries to find good grain sizes for the remaining code sections

I Considered autotuning strategies could compete with laborious, manual grain size
choice for well-behaved problems

I Our use-case, an ExaHyPE application, comes with challenges which require
awareness of the user despite the initial blackbox idea
Hard to predict task runtime and dependencies

Binning and extrapolating grain sizes yield a more robust overall strategy

Next steps
I For many setups, our autotuning reduces the number of employed cores. Other

MPI ranks (on same node) could grab these freed cores
Invasive computing

Links
http://exahype.eu/exahype-engine

http://www.peano-framework.org

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 23 / 24

Support & acknowledgements

I This talk picks up challenges tackled by the project ExaHyPE (www.exahype.eu). The project has received
funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 671698 (ExaHyPE).

I The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz
Supercomputing Centre (LRZ, www.lrz.de).

I Experiments were made possible through Durham’s supercomputer Hamilton.

Dominic E. Charrier, Tobias Weinzierl: An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems— PPAM17 24 / 24

www.exahype.eu
www.gauss-centre.eu
www.lrz.de

