
Fourth workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in new HPC Systems

Relaxing the correctness conditions

on concurrent data structures
for multicore CPUs:

a numerical case study

Giuliano Laccetti1, Marco Lapegna1, Valeria Mele1, Raffaele Montella2

1) depart. Mathematics and Applications – Univ. of Naples Federico II
2) depart. Science and Technologies – Univ. of Naples Parthenope

Aims of the talk

In this talk we introduce an approach for the management of

heap based priority queues on multicore CPUs

a heap 𝐻 is a partially ordered binary tree where

each node has a priority higher than its children, so that

the item with highest priority 𝑒∗ is in the root

(the so called max-heap property).

Dynamical data structure where the

sequence of items with high priority is unpredictable

Heap based priority queues

Heaps are useful when an application needs set of data not requiring a complete
ordering, but only the access to some items tagged with high priority.

indispensable tools in almost every scientific field

• operating systems (process selection in scheduling algorithms)

• scientific computing (error reduction in numerical algoritms)

• big data (affinity maximization in clustering algorithms)

initialize data structure

while (stopping criterion == false) do

 do some work

 remove(max_priority_item)

 process data

 generate new items

 insert(new items)

 do some work

endwhile

general framework for a heap based algorithm

𝑇 𝑘 = log2(𝑘)

computational cost of
the basic operations
(remove and insert)

computing and performance model

• 𝑁 processing elements (the cores)

• assume 1 thread for each core (i.e. N concurrents thread 𝑃𝑖)

• Local caches an a shared main memory

• 𝑇(𝑁, 𝑧) = total elapsed time to complete a task with dimension z using N threads

• Define scaled efficiency (weak scalability) the ratio

𝑅 𝑁, 𝑧 =
𝑇(1, 𝑧)

𝑇(𝑁,𝑁𝑧)

the scaled efficiency measures the ability of the algorithm to solve a

N-times larger problem with N concurrent threads in the same time

ideal value: 𝑅 𝑁, 𝑧 = 1

𝑃0 𝑃1 𝑃2 𝑃3

memory

cache cache cache cache

computing and performance model

𝑇(𝑁, 𝑧) can be decomposed as

𝑇 𝑁, 𝑧 = 𝑇𝑠 +
𝑇𝑐 𝑍

𝑁
+ 𝑇𝑜(𝑁)

• 𝑇𝑠 is the running time for the serial section of the algorithm. It is independent on
the problem size 𝑧

• 𝑇𝑐(𝑁)/𝑁 is the running time for the parallel section of the algorithm. It is
composed by 𝑁 concurrent tasks of equal running time

• 𝑇𝑜(𝑁) is the synchronization overhead. It is a not decreasing function of the
number of threads 𝑁

𝑅 𝑁, 𝑧 ≤
𝑇(1, 𝑧)

𝑇 1, 𝑧 + 𝑇𝑜(𝑁)
≤ 1

First solution (centralized heap)

All threads access a single heap in the shared memory

with the aim to share the items with highest priority

All basic operations on the heap must be carried out in a critical section

N threads entering M times in a critical region have an overhead

𝑇𝑜 𝑁 = 𝑀 𝑁 − 1 𝑡𝑐 = 𝑂 𝑁

𝑅(𝑁, 𝑧) ≤ 𝑂
𝑇(1, 𝑧)

𝑇 1, 𝑧 + 𝑁

global synchronization !!

very poor scalability !!

𝑃0 𝑃1 𝑃2 𝑃3

Second solution (distributed heap)

N separated data structure, one for each thread,

each of them maccessing its private data structure

synchronization overhead
𝑇𝑜 𝑁 = 𝑐𝑜𝑛𝑠𝑡

𝑅 𝑁, 𝑧 ≤ 𝑂
𝑇(1, 𝑧)

𝑇 1, 𝑧 + 𝑐𝑜𝑛𝑠𝑡

no synchronization
among threads
(natural parallelism) !!!

perfect scalability !!

BUT…

𝑃0 𝑃1 𝑃2 𝑃3

main problem of the second solution

Dynamical data structures are used for dynamic problems, where the

sequence of items with high priority is unpredictable,

and it is impossible to distribute them uniformly before the computation

In case of items with priority very poorly distributed among the heaps,

there is a high risk that the items with the highest priority in each heap,

are not those that globally have the highest priority,

so that some threads can process unimportant items

with no significant progress for the whole application.

In this cases it should be desirable a periodical redistribution strategy

in order to balance the critical items among the threads.

a contraposition

Distributed approach:
Each thread manages a private sub-structure.

Access to the data without syncronization.

PRO: high performance, high scalability

CONS: threads can process unimportant items

if the priority are not fairly distributed, risk of

no significant progress for the application

Centralized approach:
All threads access a single data structure.

Basic operations carried out in a critical section.

PRO: correctness, access to item with highest

priority, linearizability (same behaviour of the

sequential data structure)

CONS: synchronization time depending on the

number of threads, low performance, poor scalability

an effective trade off: a relaxed approach

1: thread organization

𝑁 threads 𝑃𝑖 are logically organized according a 2-dimensional periodical mesh 𝑀2

in each direction 𝑃𝑖 has 2 neighbors:

• In the horizontal direction (𝑑𝑖𝑟 = 0) 𝑃𝑖− and 𝑃𝑖+ are respectively the leftmost and
the rightmost thread of 𝑃𝑖 in 𝑀2

• In the vertical direction (𝑑𝑖𝑟 = 1) 𝑃𝑖− and 𝑃𝑖+ are respectively the lowermost and
the uppermost thread of 𝑃𝑖 in 𝑀2

A shared buffer between each couple of connected nodes is established. The buffer
is used to allow exchanging data according a producer-consumer protocol

the threads on the opposite faces of the mesh are connected, so that the mesh is
periodical

𝑑𝑖𝑟 = 1

𝑑𝑖𝑟 = 0

a effective trade off: a relaxed approach

2. redistribution procedure

We define a loosely coordinated heap (relaxed heap) a collection of N partially ordered binary

trees 𝐻𝑖 with the max-heap property, where the roots are connected among them according the

mesh 𝑀2

Each thread 𝑃𝑖 manages a private sub-structure 𝐻𝑖 .

If e∗𝑖 > e∗𝑖+1 then the item with largest priority s∗𝑖 ∈ 𝐻𝑖, is moved forward to a connected

thread in the mesh 𝑀2, according a producer-consumer protocol, alternatively in the two

directions.

In this way the critical items with highest priority are passed from thread in thread, an iteration

after the other, through all nodes of the mesh, with a better distribution.

an example

35

32 29

32 22 25

40

36 34

32 29 28

31

26 28

22 19 25

35

32 29

32 22 25

36

32 34

28 29

40

26 31

22 19 25 28

after

 e∗𝑖 > e∗𝑖+1

𝑃𝑖 𝑃𝑖+1 𝑃𝑖−1

𝑃𝑖 𝑃𝑖−1 𝑃𝑖+1

before

𝝈 = 𝟔. 𝟑

𝝈 = 𝟐. 𝟖

In general, under little restrictive hypotheses, it is possible to show 𝝈𝒃𝒆𝒇𝒐𝒓𝒆 > 𝝈𝒂𝒇𝒕𝒆𝒓

a effective trade off: a relaxed approach

3: The algorithm (SPMD programming model)

initialize private data structure 𝑯𝒊
while (stopping criterion == false) do iteration j

 define DIR = mod(j,2)

 share e∗𝐢 with the closest threads 𝑷𝐢−𝟏 and 𝑷𝐢+𝟏 along DIR
 if (e∗𝐢 > e∗𝐢+𝟏) then

 remove(max_priority_item) from 𝑯𝒊
 produce item for 𝑷𝐢+𝟏
 endif

 if (e∗𝐢−𝟏 > e∗𝐢) then
 consume item produced by 𝑷𝐢−𝟏
 insert(new item) in 𝑯𝒊
 endif

 remove(max_priority_item)

 process data

 generate new items

 insert(new items)

 do some work

endwhile

Redistribution
procedure

a effective trade off: a relaxed approach

4. efficiency

In the proposed algorithm there are no global synchronizations among the threads,
and each of them exchanges data only with two connected threads 𝑃𝑖− and 𝑃𝑖+ , so
that the synchronization overhead is 𝑇𝑜 𝑁 = 𝑂 1 = 𝑐𝑜𝑛𝑠𝑡 ,

𝑅 𝑁, 𝑧 =
𝑇(1, 𝑧)

𝑇(𝑁, 𝑁𝑧)
=
𝑇(1, 𝑧)

𝑇 1, 𝑧 + 𝑇𝑜
= 𝑐𝑜𝑛𝑠𝑡

the informations about the items with high priority are moved from thread to
another one along the 2 directions of the mesh

Such informations reaches all threads after a number of iterations equal to the
maximum distance between any pair of threads (the so called diameter of the mesh
𝐷 𝑀2

The diameter of a 2-dimensional periodical mesh is 𝐷 𝑀2 = 2 𝑁 − 1 when the

mesh is symmetric and N is a perfect square

𝐷 𝑀2 is a slow-growing function of N ensuring a fast distribution of critical items
even with large values of N

a numerical case study

a parallel adaptive algorithm for multidimensional quadrature

𝐼 𝑓 = 𝑓 𝑡1, … , 𝑡𝑑 𝑑𝑡1⋯𝑑𝑡𝑑𝑈

 𝑈 = 𝑎1, 𝑏1 ×⋯× 𝑎𝑑 , 𝑏𝑑 d-dimensional rectangular region

Algorithm:

• Iterative algorithm refining a partition of 𝑈 that at each step compute

𝐼(𝑓) ≅ 𝑅(𝑗) = 𝑟(𝑘)

𝑠(𝑘)∈𝑃

𝐸(𝑗) = 𝑒(𝑘)

𝑠(𝑘)∈𝑃

with the aim

lim
𝑗
𝑅(𝑗) = 𝐼 𝑓 lim

𝑗
𝐸(𝑗) = 0

the subdomains will be smaller where the error estimate is larger

P is a partition of U

𝑟(𝑘) is a quadrature rule
𝑒(𝑘) is an error estimate procedure

parallel adaptive algorithm

the convergence rate of this procedure depends on the behavior of the integrand
function (presence of peaks, oscillations, etc)

in order to reduce as soon as possible the error, the algorithm splits in two parts the
subdomain 𝑆∗ with maximum error estimate 𝑒∗.

The two new subdomains take the place of 𝑆∗ in P, and in a similar way the

approximations 𝑄(𝑗)and 𝐸(𝑗) are updated.

A natural implementation of a such procedure can be done with a priority queue with
the max-heap property, where the nodes of the heap 𝐻 contain the subdomains of
the partition 𝑃, and where the priority is represented by the error estimate 𝑒(𝑘) in

each subdomain.

The subdomain to be split at the iteration j, with maximum error estimate 𝑒∗ is in

the root of the tree.

For such a reason, to implement the algorithm in a multicore based computing
environment, it is possible to use the loosely synchronous approach for the

heap management.

test function and computing environment

test function

𝛼𝑖 𝑎𝑛𝑑 𝛽𝑖 are random values (10 functions)

strong discontinuity (and large error)

in the subdomains containing

the edge of the yellow region

computing environment

• Intel Xeon E5-4610 v2 with 8 core @2.33 GHz

• DDR3 256 GB shared memory

• Scientific Linux 6.2 OS

• C compiler with POSIX Thread Library

𝑓 𝑥 =
0 𝑖𝑓 𝑥1 > 𝛽1 𝑜𝑟 𝑥2 > 𝛽2
exp 𝛼1𝑥1 +⋯+ 𝛼1𝑥1 𝑜𝑡ℎ𝑒𝑟𝑤𝑎𝑦𝑠

𝛽1

𝛽2
𝑃1 𝑃0

𝑃2 𝑃3

es. with d=2 dimension

first set of experiments

aim: to measure the scaled efficiency

Option 1. Without redistribution procedure: the integration domain 𝑈 is equally
distributed among the 𝑁 threads 𝑃𝑖 and the calculation goes on without interaction
among threads. In this case any difficulties in the integration domain are not shared
among the threads.

Option 2. With redistribution procedure: after the same distribution of 𝑈 among the
threads, the computation attempts to balance the work load among the local data
structures 𝐻𝑖 of the loosely coordinated heap 𝐻. In this case the difficulties in the
integration domain are shared among the threads.

option 1 option 2

best

worst

average

z (number of funct. eval.) z (number of funct. eval.)

R(N,z)

(N=8)
R(N,z)

(N=8)

second set of experiments

aim: to measure the benfit of the proposed redistribution procedure on the accuracy
of the results.

This is a critical experiment because it is tested the ability of the loosely coordinated
heap H to supply effectively high-priority items to the threads

n
u
m

e
ri
c
a
l
e
rr

o
r

1 thread

8 threads – no redistribution

8 threads – with redistribution

z (number of funct. eval.)

conclusions

We proposed a relaxed model for heap-based priority queues in multicore
environments. The work is motivated by the need to achieve a balance between

two contrasting requirements on the data structure: correctness and scalability.

To this end, we have developed an approach based on a

distribution of the data structure among the computing units.

At the same time we introduced a periodical redistribution

of the high-priority nodes, based on a synchronization strategy

involving only a small (and constant) number of processing units.

Our experiments show that such a strategy is able to realize an

effective compromise between the two requirements.

