
Fifth workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in new HPC Systems

An adaptive strategy for dynamic data clustering
with the K-means algorithm

Giuliano Laccetti1, Marco Lapegna1, Valeria Mele1, Diego Romano2

1) depart. Mathematics and Applications – Univ. of Naples Federico II
2) Institute for high performance computing and networking of the CNR.

the K-means algorithm

Given

• an integer K

• a set 𝑆 = { 𝑠𝑛 ∈ 𝑅
𝑑 , 𝑛 = 1, . . , 𝑁} of N vectors in the d-dimensional real space

the K-means algorithms is aimed to collect the items of S in K subset (called
clusters) of a partition 𝑃𝐾 = {𝐶𝑘  𝑆, 𝑘 = 1, . . , 𝐾 } on the basis of their similarity

the traditional description of the K-mean algorithm is

1. subdivide the N items in K arbitrary clusters, each of them with 𝑁𝑘 items

2. compute the center 𝑐𝑘 of the clusters with the vector operation

𝑐𝑘 =
1

𝑁𝑘
 𝑠𝑛

𝑁𝑘

𝑛=1

3. for each 𝑠𝑛 find the cluster 𝐶𝑘 that minimize the euclidian distance from its center
𝑚𝑖𝑛||𝑠𝑛 − 𝑐𝑘||2 , 𝑘 = 1, . . , 𝐾

4. reassign each 𝑠𝑛 to the new cluster 𝐶𝑘

5. repeat steps 2 - 4 until there is no change

main problems of the K-means algorithm

• The value of K is an input data and it must be fixed before the execution (not true
for several applications)

• K too small : dissimilar items can be grouped in the same cluster

• K too large : similar items can be assigned to different clusters

• the result strongly depends on the initial assignment of the elements to the
clusters (convergence to a local optimum)

execute the algorithm several times with increasing values of K,

and some quality index is used to choose a "good solution".

example

RMSSTD =
 𝑠𝑛−𝑐𝑘

2
𝑠𝑛𝑘

𝑑(𝑁−𝐾)

root-mean-square standard deviation

is a measure of the homogeneity of the clusters

of the resulting partition.

• Large values of RMSSTD indicates that the clusters are not homogeneous.

• Usually RMSSTD decreases when K increases

• A growth of RMSSTD indicates that a homogeneous cluster has been splitted

Algorithm 1

Algorithm 1: dynamic K-means algorithm

1) Set the number of clusters K = 0

2) repeat

 2.1) Increase the number of clusters K = K+1

 2.2) Assign randomly the N elements 𝑠𝑛 ∈ 𝑆 to arbitrary K clusters 𝐶𝐾
 each of them with 𝑁𝑘 items

 2.3) repeat
 2.3.1) Compute the center 𝑐𝑘 of each clusters 𝐶𝑘
 2.3.2) For each 𝑠𝑛 ∈ 𝑆 find the cluster 𝐶𝑘 minimizing the

 Euclidean distance 𝑠𝑛 − 𝑐𝑘 𝑘 = 1, . . , 𝐾

 2.3.3) Reassign the elements 𝑠𝑛 to the new clusters

 until (no change in the reassignment)

 2.4) update RMSSTD

 until (RMSSTD starts to grow or it is smaller than a given threshold)

remark

the computational cost of the step

 2.3.3) Reassign the elements 𝑠𝑛 to the new clusters

strictly depends on the initial distribution of the elements 𝑠𝑛 in the K clusters 𝐶𝐾

An unsuitable initial assignment can result in a

huge number of movement of the elements 𝑠𝑛 among the clusters 𝐶𝐾

Our method is designed to reduce the movements of the elements

among the clusters, with the aim of achieving a trade-off between a good initial

distribution with a reasonable computational cost.

main idea of our approach

to use, at each iteration of the outer iterative structure of the Algorithm 1, the
partition of the elements already defined in the previous iteration,

working only on the clusters with the more dissimilar elements

To this aim, let consider the standard deviation of the elements 𝑠𝑘 ∈ 𝐶𝑘

𝜎𝑘 =
1

𝑁𝑘 − 1
 (𝑠𝑛 − 𝑐𝑘)

2

𝑁𝑘

𝑛=1

The value of 𝝈𝒌 can be used to measure the similarity of the elements in 𝐶𝑘

Greater the value 𝜎𝑘, farther to the center 𝑐𝑘 are the elements of 𝐶𝑘 ,

so that it is composed by dissimilar elements.

main idea of our approach

at each iteration, the initial distribution of the elements in the clusters is defined

by splitting in two subset 𝑪𝜶 and 𝑪𝜷 only the cluster 𝑪𝑲−𝟏

with the largest standard deviation in the previous iteration

More precisely:

• 𝐾 = 1 𝑃1 = 𝐶1 where 𝐶1 = 𝑆

• 𝐾 > 1 𝑃𝐾 = 𝑃𝐾−1 − 𝐶𝐾−1 ∪ {𝐶𝛼 , 𝐶𝛽}

This strategy is based on the assumption that, at a given iteration K,

very similar items have been already grouped

in compact clusters with small values for the standard deviation 𝜎𝑘 ,

which therefore does not require an assignment to a new cluster.

Algorihtm 2

Algorithm 2: adaptive K-means algorithm

1) Set the number of clusters K = 0

2) repeat
 2.1) Increase the number of clusters K = K+1

 2.2) find the cluster 𝐶𝐾−1 ∈ 𝑃𝐾−1 with the largest standard deviation

 2.2) Define the new partition 𝑃𝐾 = 𝑃𝐾−1 − 𝐶𝐾−1 ∪ {𝐶𝛼 , 𝐶𝛽}

 2.4) repeat
 2.4.1) Compute the center 𝑐𝑘 of each clusters 𝐶𝑘
 2.4.2) For each 𝑠𝑛 ∈ 𝑆 find the cluster 𝐶𝑘 minimizing the

 Euclidean distance 𝑠𝑛 − 𝑐𝑘 𝑘 = 1, . . , 𝐾

 2.4.3) Reassign the elements 𝑠𝑛 to the new clusters

 until (no change in the reassignment)
 2.5) update RMSSTD

 until (RMSSTD starts to grow or it is smaller than a given threshold)

implementation
of the adaptive
strategy

k
e
rn

e
l o

f th
e
 a

lg
o
rith

m

implementation issues: data structure

d

N

CD1

cl
u

st
er

ta

b
le

S

k

ck

Fk

Nk

σk

1

K

PT

k

.
.

.
.

.
.

pointers

to the

items

of Ck

CDk

CDK

• All the elements 𝑠𝑛 ∈ 𝑆 are stored, row by row, in a 𝑁 × 𝑑 array.

• In order to improve the computational cost, our method does not change the

order of the rows of the array, when the elements must be moved from a
cluster to another one

implementation issues: data structure

d

N

CD1

cl
u

st
er

ta

b
le

S

k

ck

Fk

Nk

σk

1

K

PT

k

.
.

.
.

.
.

pointers

to the

items

of Ck

CDk

CDK

• the composition of each cluster is defined by means of contiguous items in a
array PT, pointing to the rows of S representing the elements of the cluster

• All the displacements of elements among clusters are implemented by

exchanging only the pointers in the array PT.

implementation issues: data structure

d

N

CD1

cl
u

st
er

ta

b
le

S

k

ck

Fk

Nk

σk

1

K

PT

k

.
.

.
.

.
.

pointers

to the

items

of Ck

CDk

CDK

• In order to identify the contiguous items of the array PT pointing to a given

cluster 𝐶𝑘, a suitable data structure is defined: a Cluster Descriptor (𝐶𝐷𝑘)
that contains the key features of the cluster

implementation issues: data structure

d

N

CD1

cl
u

st
er

ta

b
le

S

k

ck

Fk

Nk

σk

1

K

PT

k

.
.

.
.

.
.

pointers

to the

items

of Ck

CDk

CDK

• the access to the Cluster Descriptors is provided by a Cluster Table (CT), that
is a pointers array whose k-th element refers to the cluster descriptor 𝐶𝐷𝑘 of

the cluster 𝐶𝑘 .

implementation issues: parallelism

In this work we concentrate the attention on multi-core CPUs (shared memory
model)

we identified two parallelism levels:

Cluster level. the degree of parallelism if given by the number of clusters K,
so that it is possible to distribute the clusters Ck among the P threads.

Element level. the degree of parallelism is given by the number of elements
N, so that it is possible to distribute the elements sn among the P threads.

d

N

CD1

cl
u

st
er

ta

b
le

S

1

K

PT

k

.
.

.
.

.
.

pointers

to the

items

of Ck

CDk

CDK

p
a
ra

ll
e
li
s
m

 a
t

c
lu

s
te

r
le

v
e
l

p
a
ra

lle
lis

m
 a

t
e
le

m
e
n
t le

v
e
l

implementation issues: parallelism

2.4) repeat
 2.4.1) Compute the center 𝑐𝑘 of each clusters 𝐶𝑘
 2.4.2) For each 𝑠𝑛 ∈ 𝑆 find the cluster 𝐶𝑘 minimizing the

 Euclidean distance 𝑠𝑛 − 𝑐𝑘 𝑘 = 1, . . , 𝐾

 2.4.3) Reassign the elements 𝑠𝑛 to the new clusters

until (no change in the reassignment)

We used the cluster level parallelism in step 2.4.1

We used the element level parallelism in step 2.4.2

Step 2.4.3 is a sequential task (in order to avoid race condition on the array PT)

k
e
rn

e
l o

f th
e
 a

lg
o
rith

m

test on a small problem

Iris data set from the UCI (Univ. California Irvine) Machine Learning Repository

• 𝑁 = 150 instances of iris flowers, divided into 𝐾 = 3 classes of the same dimension
𝑁𝑘 = 50 elements.

• The items are described on the basis of 𝑑 = 4 attributes: petal's and sepal's width
and length.

• Our experiments are aimed to measure the ability of Algorithm 2 to separate the
items in three distinct sets and to compare the results with those obtained from
Algorithm 1.

Algorithm 1 Algorithm 2

𝑁𝐾 𝜎𝐾 𝑁𝐾 𝜎𝐾

𝐶1 50 0.26 50 0.26

𝐶2 61 0.30 61 0.30

𝐶3 39 0.34 39 0.34

Number of items and standard deviation for the three clusters

same clustering !

test on a small problem

each picture refers to a couple of the 4 attributes

test on a large problem

Letter Recognition data set from the UCI (Univ. California Irvine) Machine
Learning Repository

• N = 20000 unique items, each of them representing the black and withe image

of an uppercase letter of the English alphabet.

• The character images are based on 20 different fonts and each letter within

these 20 fonts was randomly distorted to produce an item of the data set.

• Each item was converted into d = 16 numerical attributes (statistical moments,

edge counts,…)

T,2,8,3,5,1,8,13,0,6,6,10,8,0,8,0,8
I,5,12,3,7,2,10,5,5,4,13,3,9,2,8,4,10
D,4,11,6,8,6,10,6,2,6,10,3,7,3,7,3,9
N,7,11,6,6,3,5,9,4,6,4,4,10,6,10,2,8
G,2,1,3,1,1,8,6,6,6,6,5,9,1,7,5,10
S,4,11,5,8,3,8,8,6,9,5,6,6,0,8,9,7
B,4,2,5,4,4,8,7,6,6,7,6,6,2,8,7,10
A,1,1,3,2,1,8,2,2,2,8,2,8,1,6,2,7
J,2,2,4,4,2,10,6,2,6,12,4,8,1,6,1,7
M,11,15,13,9,7,13,2,6,2,12,1,9,8,1,1,8
X,3,9,5,7,4,8,7,3,8,5,6,8,2,8,6,7
O,6,13,4,7,4,6,7,6,3,10,7,9,5,9,5,8
G,4,9,6,7,6,7,8,6,2,6,5,11,4,8,7,8
M,6,9,8,6,9,7,8,6,5,7,5,8,8,9,8,6
R,5,9,5,7,6,6,11,7,3,7,3,9,2,7,5,11
F,6,9,5,4,3,10,6,3,5,10,5,7,3,9,6,9
O,3,4,4,3,2,8,7,7,5,7,6,8,2,8,3,8

accuracy test: Algorithm 1 vs Algorithm 2

Values of the RMSSTD for Algorithm 1 and Algorithm 2 (K=26 clusters)

K

R
M

S
S

T
D

Algorithm 1 Algorithm 2

Disp Time (sec) Disp Time (sec)

1001349 49.3 130801 21.1

Time and number of items displaced

less than 1%
difference

in about half of the
execution time

efficiency test

Algorithm 1 Algorithm 2

P Time

(sec)

𝑆𝑃 𝐸𝑃 Time

(sec)

𝑆𝑃 𝐸𝑃

4 25.94 1.9 0.48 8.11 2.6 0.65

8 15.40 3.2 0.40 4.58 4.6 0.58

12 11.73 4.2 0.35 3.24 6.5 0.54

16 9.66 5.1 0.32 2.57 8.2 0.51

• CPU 16-core Intel E7-4850V4 CPU @ 2.1 Ghz
• 16 Gbytes of main memory
• C language, Linux OS, Posix thread library

Remember: step 2.4.3 (Reassignment of the elements 𝑠_𝑛 to the new

clusters) is a sequential step, and it is much less expensive in Algorithm 2

conclusions and future works

CONCLUSIONS

• we introduced a parallel adaptive approach to improve the performance of
dynamic data clustering with the K-means algorithm.

• Our approach avoids the displacement of similar items already grouped into
compact clusters, characterized by small values of the standard deviation.

• The achieved results are very promising, with a clusters quality similar to
traditional approaches, with a much lower computational cost and a higher
efficiency

FUTURE WORKS

• implementations with other parallel programming models (GPUs, Distributed
memories environments)

• applications to real life cases

