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the K-means algorithm 

Given 

• an integer  K 

• a set  𝑆 = { 𝑠𝑛  ∈ 𝑅
𝑑  , 𝑛 = 1, . . , 𝑁}  of N vectors in the d-dimensional real space 

 

the K-means algorithms is aimed to collect  the items of S in K subset  (called 
clusters) of a partition  𝑃𝐾 = {𝐶𝑘   𝑆, 𝑘 = 1, . . , 𝐾 } on the basis of their similarity 

 

 

 

the traditional description of the K-mean algorithm is 

 

1. subdivide the N items  in K arbitrary clusters, each of them with 𝑁𝑘   items 

2. compute the center 𝑐𝑘 of the clusters with the vector operation 

𝑐𝑘 =  
1

𝑁𝑘
 𝑠𝑛

𝑁𝑘

𝑛=1

 

3. for each 𝑠𝑛 find the cluster 𝐶𝑘  that minimize the euclidian distance from its center 
𝑚𝑖𝑛||𝑠𝑛  −  𝑐𝑘||2 , 𝑘 = 1, . . , 𝐾 

4. reassign each 𝑠𝑛  to the new cluster  𝐶𝑘   

5. repeat steps 2 - 4 until there is no change 

 



main problems of the K-means algorithm 

 

• The value of K is an input data and it must be fixed before the execution (not true 
for several applications) 

• K too small : dissimilar items can be grouped in the same cluster 

• K too large : similar items can be assigned to different clusters  

 

• the result strongly depends on the initial assignment of the elements to the 
clusters (convergence to a local optimum) 

 

 

 

 

 

execute the algorithm several times with increasing values of K,  

and some quality index is used to choose a "good solution".  

 



example 

 

 

RMSSTD =  
  𝑠𝑛−𝑐𝑘

2
𝑠𝑛𝑘

𝑑(𝑁−𝐾)
 

 

root-mean-square standard deviation  

 

is a measure of  the homogeneity of the clusters  

of the resulting  partition. 

 

 

 

• Large values of RMSSTD indicates that the clusters are not homogeneous.  

• Usually RMSSTD decreases when K increases 

• A growth of RMSSTD indicates that a homogeneous cluster has been splitted 

 



Algorithm 1 

 
Algorithm 1: dynamic K-means algorithm 
 
 
1) Set the number of clusters K = 0 

2) repeat  
 
 2.1) Increase the number of clusters K = K+1 

 2.2) Assign randomly the N elements  𝑠𝑛  ∈ 𝑆  to arbitrary K  clusters  𝐶𝐾   
  each of them with 𝑁𝑘 items 
 
 2.3) repeat 
  2.3.1) Compute the center 𝑐𝑘   of each clusters 𝐶𝑘 
  2.3.2) For each 𝑠𝑛  ∈ 𝑆 find the cluster 𝐶𝑘  minimizing the 

   Euclidean distance   𝑠𝑛 − 𝑐𝑘     𝑘 = 1, . . , 𝐾 

  2.3.3) Reassign  the elements 𝑠𝑛  to  the new clusters  

         until   (no change in the reassignment) 
 
 2.4) update RMSSTD 
 
    until  (RMSSTD starts to grow or it is smaller than a given threshold) 
 



remark 

the computational cost of the step  

 

  2.3.3) Reassign  the elements 𝑠𝑛  to  the new clusters  

 

strictly depends on the initial distribution of the elements 𝑠𝑛 in the K clusters 𝐶𝐾 

 

 

 

 

An unsuitable initial assignment can result in a  

huge number of movement of the elements 𝑠𝑛 among the clusters 𝐶𝐾 

 

 

 

 

Our method is designed to reduce the movements of the elements 

among the clusters, with the aim of achieving a trade-off between a good initial 

distribution with a reasonable computational cost. 



main idea of our approach 

 

to use, at each iteration of the outer iterative structure of the Algorithm 1, the 
partition of the elements already defined in the previous iteration,  

working only on the clusters with the more dissimilar elements 

 

 

 

To this aim, let consider the standard deviation of the elements   𝑠𝑘  ∈  𝐶𝑘 

 

𝜎𝑘 =  
1

𝑁𝑘 − 1
 (𝑠𝑛 − 𝑐𝑘)

2

𝑁𝑘

𝑛=1

 

 

The value of 𝝈𝒌  can be used to measure the similarity of the elements in 𝐶𝑘 

 

 

Greater the value 𝜎𝑘, farther  to the center 𝑐𝑘 are the elements of 𝐶𝑘 ,  

so that it is  composed by dissimilar elements. 

 

 



main idea of our approach 

at each iteration, the initial distribution of the elements in the clusters is defined  

by splitting in two subset 𝑪𝜶 and 𝑪𝜷  only the cluster 𝑪𝑲−𝟏     

with the largest standard deviation in the previous iteration 

 

 

 

More precisely: 

 

• 𝐾 = 1        𝑃1 =  𝐶1    where  𝐶1 = 𝑆 

 

• 𝐾 > 1         𝑃𝐾 =  𝑃𝐾−1 − 𝐶𝐾−1   ∪ {𝐶𝛼 , 𝐶𝛽}  

 

 

 

This strategy is based on the assumption that, at a given iteration K,  

very similar items have been already grouped  

in compact clusters with small values for the standard deviation  𝜎𝑘 ,  

which therefore does not require an assignment to a new cluster. 



Algorihtm 2 

 
Algorithm 2: adaptive K-means algorithm 
 
 
1) Set the number of clusters K = 0 

2) repeat  
 2.1) Increase the number of clusters K = K+1 

 2.2) find the cluster 𝐶𝐾−1   ∈ 𝑃𝐾−1 with the largest standard deviation 

 2.2) Define the new partition 𝑃𝐾 =  𝑃𝐾−1 − 𝐶𝐾−1   ∪ {𝐶𝛼 , 𝐶𝛽}  

 
 
 2.4) repeat 
  2.4.1) Compute the center 𝑐𝑘   of each clusters 𝐶𝑘 
  2.4.2) For each 𝑠𝑛  ∈ 𝑆 find the cluster 𝐶𝑘  minimizing the 

   Euclidean distance   𝑠𝑛 − 𝑐𝑘     𝑘 = 1, . . , 𝐾 

  2.4.3) Reassign  the elements 𝑠𝑛  to  the new clusters  

         until   (no change in the reassignment) 
 2.5) update RMSSTD 
 
    until  (RMSSTD starts to grow or it is smaller than a given threshold) 
 

implementation 
of the adaptive 
strategy 
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implementation issues: data structure 
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• All the elements 𝑠𝑛 ∈ 𝑆 are stored, row by row, in a 𝑁 × 𝑑 array.  
 
• In order to improve the computational cost, our method does not change the  

order of the rows of the array, when the elements must be moved from a 
cluster  to another one 



implementation issues: data structure 
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• the composition of each cluster is defined by means of contiguous items in a 
array PT, pointing to the rows of S representing the elements of the cluster 

 
• All the displacements of elements among clusters are implemented by 

exchanging only the pointers in the array PT. 



implementation issues: data structure 
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• In order to identify the contiguous items of the array PT pointing to a given 

cluster  𝐶𝑘, a suitable data structure is defined: a Cluster Descriptor ( 𝐶𝐷𝑘  ) 
that contains the key features of the cluster 



implementation issues: data structure 
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• the access to the Cluster Descriptors is provided by a Cluster Table (CT ), that 
is a pointers array whose k-th element refers to the cluster descriptor  𝐶𝐷𝑘   of 

the cluster 𝐶𝑘  . 



implementation issues: parallelism 

In this work we concentrate the attention on multi-core CPUs (shared memory 
model) 
 
we identified two parallelism levels: 
 
Cluster level. the degree of parallelism if given by the number of clusters K, 
so that it is possible to distribute the clusters Ck among the P threads.  

 
Element level. the degree of parallelism is given by the number of elements 
N, so that it is possible to distribute the elements sn among the P threads.  
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implementation issues: parallelism 

2.4) repeat 
 2.4.1) Compute the center 𝑐𝑘   of each clusters 𝐶𝑘 
 2.4.2) For each 𝑠𝑛  ∈ 𝑆 find the cluster 𝐶𝑘  minimizing the 

   Euclidean distance   𝑠𝑛 − 𝑐𝑘     𝑘 = 1, . . , 𝐾 

 2.4.3) Reassign  the elements 𝑠𝑛  to  the new clusters  

until   (no change in the reassignment) 

We used the cluster level parallelism in step 2.4.1 
 
We used the element level parallelism in step 2.4.2 
 
Step 2.4.3 is a sequential task (in order to avoid race condition on the array PT)  
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test on a small problem 

Iris data set from the UCI (Univ. California Irvine) Machine Learning Repository  

 

• 𝑁 = 150 instances of iris flowers, divided into 𝐾 = 3  classes of the same dimension 
𝑁𝑘 =  50  elements.  

• The items are described on the basis of 𝑑 = 4  attributes: petal's and sepal's width 
and length.  

• Our experiments are aimed to measure the ability of Algorithm 2 to separate the 
items in three distinct sets and to compare the results with those obtained from 
Algorithm 1. 

Algorithm 1 Algorithm 2 

𝑁𝐾 𝜎𝐾 𝑁𝐾 𝜎𝐾 

𝐶1 50 0.26 50 0.26 

𝐶2 61 0.30 61 0.30 

𝐶3 39 0.34 39 0.34 

Number of items and standard deviation for the three clusters 

same clustering ! 



test on a small problem 

each picture refers to a couple of the 4 attributes  



test on a large problem 

Letter Recognition data set from the UCI (Univ. California Irvine) Machine 
Learning Repository  
 
• N = 20000 unique items, each of them representing the black and withe image 

of an uppercase letter of the English alphabet.  
 
• The character images are based on 20 different fonts and each letter within 

these 20 fonts was randomly distorted to produce an item of the data set.  
 
• Each item was converted into d = 16 numerical attributes (statistical moments, 

edge counts,… ) 

T,2,8,3,5,1,8,13,0,6,6,10,8,0,8,0,8 
I,5,12,3,7,2,10,5,5,4,13,3,9,2,8,4,10 
D,4,11,6,8,6,10,6,2,6,10,3,7,3,7,3,9 
N,7,11,6,6,3,5,9,4,6,4,4,10,6,10,2,8 
G,2,1,3,1,1,8,6,6,6,6,5,9,1,7,5,10 
S,4,11,5,8,3,8,8,6,9,5,6,6,0,8,9,7 
B,4,2,5,4,4,8,7,6,6,7,6,6,2,8,7,10 
A,1,1,3,2,1,8,2,2,2,8,2,8,1,6,2,7 
J,2,2,4,4,2,10,6,2,6,12,4,8,1,6,1,7 
M,11,15,13,9,7,13,2,6,2,12,1,9,8,1,1,8 
X,3,9,5,7,4,8,7,3,8,5,6,8,2,8,6,7 
O,6,13,4,7,4,6,7,6,3,10,7,9,5,9,5,8 
G,4,9,6,7,6,7,8,6,2,6,5,11,4,8,7,8 
M,6,9,8,6,9,7,8,6,5,7,5,8,8,9,8,6 
R,5,9,5,7,6,6,11,7,3,7,3,9,2,7,5,11 
F,6,9,5,4,3,10,6,3,5,10,5,7,3,9,6,9 
O,3,4,4,3,2,8,7,7,5,7,6,8,2,8,3,8 



accuracy test: Algorithm 1 vs Algorithm 2 

Values of the RMSSTD for Algorithm 1 and Algorithm 2 (K=26 clusters) 

K 

R
M

S
S

T
D

 

Algorithm 1 Algorithm 2 

Disp Time (sec) Disp Time (sec) 

1001349 49.3 130801 21.1 

Time and number of items displaced 

less than 1% 
difference  
 
in about half of the 
execution time 



efficiency test 

Algorithm 1 Algorithm 2 

P Time 

(sec) 

𝑆𝑃 𝐸𝑃 Time 

(sec) 

𝑆𝑃 𝐸𝑃 

4 25.94 1.9 0.48 8.11 2.6 0.65 

8 15.40 3.2 0.40 4.58 4.6 0.58 

12 11.73 4.2 0.35 3.24 6.5 0.54 

16 9.66 5.1 0.32 2.57 8.2 0.51 

• CPU 16-core Intel E7-4850V4 CPU @ 2.1 Ghz  
• 16 Gbytes of main memory 
• C language, Linux OS, Posix thread library 

Remember: step 2.4.3 (Reassignment of  the elements 𝑠_𝑛  to  the new 

clusters) is a sequential  step, and it is much less expensive in Algorithm 2 
 



conclusions and future works 

 

CONCLUSIONS 

 

• we introduced a parallel adaptive approach to improve the performance of 
dynamic data clustering with the K-means algorithm.  

• Our approach avoids the displacement of similar items already grouped into 
compact clusters, characterized by small values of the standard deviation.  

• The achieved results are very promising, with a clusters quality similar to 
traditional approaches, with a much lower computational cost and a higher 
efficiency 

 

 

 

FUTURE WORKS 

 

• implementations with other parallel programming models (GPUs, Distributed 
memories environments) 

• applications to real life  cases 


