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Introduction and motivations

Data Assimilation (DA) problem and Variational (Var) formulation.
Given

y = {yk}k=0,...,r+1 ∈ R(r+2)·nobs : the
vector of the observations;

u0 ∈ RNP : the vector of the state at
time t0;

G ∈ R(r+2)·nobs×NP=[H0 H1 ... Hr+1]
T

:
the block matrix composed by linear
approximation of a observation
mapping;

Q = diag(Q0,Q1, . . . ,Qr+1),
R = diag(R0,R1 . . . ,Rr+1): covariance
matrices of the errors on observations
and model, respectively.

The 4D-Var DA problem concerns the computation of:

uDA = argminu∈RNP·NJ(u),

with
J(u) = α||u − uM||2

B−1 + ||Gu − y ||2
R−1 .
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Introduction and motivations

DA problem usually used to handle a huge amount of data, so, it is a
large and computationally expensive problem;

many assimilation techniques have been developed for solving DA
problem, we focus on Kalman Filter (KF);

KF dates back to 1960, when R.E. Kalman provided recursive
algorithm to compute the solution of a data filtering and prediction
problem;

we consider Constrained Least Square (CLS) model as this is the
prototype model of variational DA;

we introduce a new formulation of DD for KF where the innovation
mainly lies in the decomposition ab initio of the whole KF
computational method.
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Kalman Filter procedure

KF procedure

sws

Predicted state estimate:

  Predicted error covariance matrix:

Kalman Gain:

Kalman covariance matrix:

Kalman state estimate:

    State estimate

 Measurements
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CLS problem

We consider the overdetermined linear system

S : Ax = y

where

A =


H0

H1

...
Hr+1

 ∈ R(r+2)·m×n; y =


y0
y1
...
yr+1

 ∈ R(r+2)·m m > n, r ∈ N.

and R = diag(R0,R1, . . . ,Rr+1) ∈ R(r+2)·m×(r+2)·m the weight matrix.
This formulation allows us to apply KF (recursive algorithm).

CLS problem

CLS problem refers to the computation of x̂ such that:

CLS : x̂ = arg min
x∈Rn

J(x) (1)

where J(x) = ||Ax − y ||2R =
∑r+1

k=0 ||Hkx − yk ||2Rk
.
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Variational-Kalman Filter (Var-KF) formulation

Var Kalman problem

The Var Kalman problem is to compute for each k = 0, 1, . . . , r the
vector x̂k+1:

x̂k+1 = argminxk+1∈RnJk+1(xk+1)
= {‖xk+1 −Mk,k+1x̂k‖2Qk

+ ‖yk+1 − Hk+1xk+1‖2Rk+1
}

We note that VAR-KF is indeed a CLS problem.
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1. KF-CLS

KF procedure applied to CLS problem.

sws

Predicted state estimate:

  Predicted error covariance matrix:

Kalman Gain:

Kalman covariance matrix:

Kalman state estimate:

    State estimate

 Measurements

Where:
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2. DD-CLS

We consider the case r = 0 i.e.

A =

[
H0

H1

]
∈ R(m0+m1)×n; y =

[
y0
y1

]
∈ R(m0+m1) m0 > n, m1 ∈ N.

and let I = {1, . . . , n} be the columns index set of A ∈ R(m0+m1)×n.

DD-CLS problem 

  DD step

DD-CLS step

● Decomposition of 
I columns index 
set;

● Restrictions of 
matrix A.

● Decomposition of 
the problem CLS. 
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2. DD-CLS: DD step.

DD step:

decomposition of I of into 2 sets (domains)

I1 = {1, ..., n1}, I2 = {n1 − s + 1, ..., n}, (2)

where s ≥ 0 is the number of indexes in common, |I1| = n1 > 0,
|I2| = n2 > 0, and the intersection (overlap) of sets

I1,2 = {n1 − s + 1, ..., n1}, (3)

restrictions of A to I1 and I2 defined in (2)

A1 = A|I1 ∈ R(m0+m1)×n1 , A2 = A|I2 ∈ R(m0+m1)×n2 . (4)
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2. DD-CLS: DD-CLS step.

DD-CLS step:

given x02 ∈ Rn2 , according the Alternating Schwarz method (ASM),
the DD approach consists in solving for n = 0, 1, 2, ... the following
overdetermined linear systems::

Sn+1
1 : A1x

n+1
1 = b − A2x

n
2 Sn+1

2 : A2x
n+1
2 = b − A1x

n+1
1 . (5)

This means to solve

Pn+1
1 : x̂n+1

1,1 = argminxn+1
1 ∈Rn1 J1(x

n+1
1 , xn

2 )

= argminxn+1
1 ∈Rn1

[
J|(I1,I2)(x

n+1
1 , xn

2 ) + µ · O1,2(x
n+1
1 , xn

2 )
] (6)

Pn+1
2 : x̂n+1

2,1 = argminxn+1
2 ∈Rn2 J2(x

n+1
2 , xn+1

1 )

= argminxn+1
2 ∈Rn2

[
J|(I2,I1)(x

n+1
2 , xn+1

1 ) + µ · O1,2(x
n+1
2 , xn+1

1 )
]
(7)

where

J|(Ii ,Ij )(x |Ii , x |Ij ) = ||H0|Ii x |Ii−(y0+H0|Ij x |Ij )||
2
R0
+||H1|Ii x |Ii−(y1+H1|Ij x |Ij )||

2
R1
, (8)

for i , j = 1, 2, O1,2 is appropriate overlapping operator and µ > 0 is
the regularization parameter.
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Validation scheme

CLS

 

 DD-CLSDD-CLS

 
 DD

KF KFKFKFKF

2

1

KF-CLS DD-KF-CLS

KF-DD-CLS

KFKFKFKFKFKFKFKFKF

CLS

 DD DD DD

 DD DD

15 / 24



1. DD-KF-CLS VS 2. KF-DD-CLS

KF

Kalman estimate

KF

Kalman estimate
 Exchange   
   of data 

For n=0,1,...

CLS

KF

Kalman estimate

   Restriction of 
Kalman estimate

    Restriction of 
Kalman estimate

We show that
x̂n+1
1,1 −−−→n→∞

x̂1|I1 , x̂n+1
2,1 −−−→n→∞

x̂1|I2 .
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Theorem

Let
S : Ax = y

be the overdetermined linear system where

A =


H0

H1

...
Hr+1

 ∈ R(r+2)·m×n; y =


y0
y1
...
yr+1

 ∈ R(r+2)·m m > n, r ∈ N.

Let x̂1 ∈ Rn be the Kalman estimate of the solution x̂ of problem

CLS : x̂ = arg min
x∈Rn

J(x)

where J(x) = ||Ax − y ||2R and R ∈ R(r+2)·m×(r+2)·m the weight matrix and
x̂n+1
1,1 , x̂n+1

2,1 be Kalman estimates of local problems Pn+1
1 , Pn+1

2 , then

x̂n+1
1,1 −−−→n→∞

x̂1|I1 , x̂n+1
2,1 −−−→n→∞

x̂1|I2 . (9)
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Experimental Results

21 / 24



Example

Decomposition of I = {1, 2, 3, 4, 5, 6} with overlap into I1 and I2 i.e. for
s = 0, 1, 2, I1 = {1, 2, 3, 4}, I2 = {4− s, ..., n} and the overlap set
I1,2 = {4− s, ..., 4}.
For s = 0, 1, 2, we consider

n ≡ |I | = 6, n1 ≡ |I1| = 4, n2 ≡ n + s − n1 ≡ |I2| = 2 + s;
x̂0i ,1 ≡ zeros(ni ) ∈ Rni , where zeros(ni ) is the null vector, i = 1, 2;
for each iteration n = 1, 2, ..., nmax , we compute
x̂n+1
1,1 ∈ R4, x̂n+1

2,1 ∈ R2: the Kalman estimates.

xn+1
s ∈ R9 the Kalman estimate obtained as follows

xn+1
s =


x̂n+1
1,1 |I1\I1,2 on I1 \ I1,2
µ
2 (x̂n+1

1 |I1,2 + x̂n+1
2 |I1,2) on I1,2

x̂n+1
2,1 |I2\I1,2 on I2 \ I1,2

,

with as regularization parameter µ ≡ 1;
x̄ solution of normal equations by Conjugate Gradient method;
nss the corresponding iterations needed to stop of the iterative
procedure.
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Example

In Table, for different choices of s, we report the values of the error and
the relative number of iterations ns necessary to overcome the established
tolerance.

Table: Values of error = ||x̄ − xns || for different values of s.

tol ns error s

10−6 20 6.4037e − 07 0
17 7.2526e − 07 1
15 5.1744e − 07 2

23 / 24



Conclusions

We introduced a new numerical scheme based on DD approach and
KF method for solving DA when the numerical data, i.e. forecast and
observations, are all available at time of analysis;

DA has long been playing a crucial role in meteorology and
oceanography and more in general, in climate science;

we are interested in real time data assimilation, so, we have only the
numerical data at the time of analysis;

we are working on decomposition of the evolution model (as model
based on the shallow water equations that describing fluid flow in the
atmosphere, oceans, rivers and channels) in sync with DD-KF.
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