
SOAP I: Intro and Message
Formats

Marlon Pierce, Bryan Carpenter, Geoffrey Fox
Community Grids Lab

Indiana University
mpierce@cs.indiana.edu

http://www.grid2004.org/spring2004

SOAP Primary References

• SOAP is defined by a number of links
– http://www.w3.org/TR/soap/

• See primarily the “Primer” and “Messaging
Framework” links.

• The actual SOAP schema is available from
http://www.w3.org/2003/05/soap-envelope/
– It is pretty small, as these things go.

SOAP and Web Services
• Our previous lectures have

looked at WSDL
– Defines the interfaces for

remote services.
– Provides guidelines for

constructing clients to the
service.

– Tells the client how to
communicate with the
service.

• The actual
communications are
encoded with SOAP.
– Transported by HTTP

Client

Service

WSDL

WSDL

SOAP
Request

SOAP
Response

Defining SOAP Messages

• Given what you have learned about WSDL,
imagine it is your job to design the message
interchange layer.
– What are the requirements?

• Note SOAP actually predates WSDL, so
this is in reverse order.

Web Service Messaging
Infrastructure Requirements?

• Define a message format
– Define a messaging XML schema
– Allow the message to contain arbitrary XML from other schemas.

• Keep It Simple
– Messages may require advanced features like security, reliability, conversational

state, etc.
– KISS, so don’t design these but do design a place where this sort of advanced

information can go.
• Tell the message originator is something goes wrong.
• Define data encodings

– That is, you need to tell the message recipient the types of each piece of data.
• Define some RPC conventions that match WSDL

– Your service will need to process the message, so you need to provide some simple
conventions for matching the message content to the WSDL service.

• Decide how to transport the message.
– Generalize it, since messages may pass through many entities.

• Decide what to do about non-XML payloads (movies, images, arbitrary
documents).

SOAP Lecture Parts

• SOAP Messages:
– Headers and body elements with examples.

• SOAP Encoding:
– Rules for encoding data.
– Focus on SOAP for RPC

• SOAP Routing and Processing
• SOAP Over HTTP:

– How SOAP gets sent over the wire.

SOAP Messaging

SOAP Basics
• SOAP is often thought of as a protocol extension for doing

Remote Procedure Calls (RPC) over HTTP.
– This is how we will use it.

• This is not completely accurate: SOAP is an XML
message format for exchanging structured, typed data.
– It may be used for RPC in client-server applications
– May be used to send XML documents
– Also suitable for messaging systems (like JMS) that follow one-to-

many (or publish-subscribe) models.
• SOAP is not a transport protocol. You must attach your

message to a transport mechanism like HTTP.

What Does SOAP Look Like?

• The next two slides shows examples of
SOAP message.
– It’s just XML

• First slide is an example message that might
be sent from a client to the echo service.

• Second slide is an example response.
– I have highlighted the actual message payload.

<?xml version=‘1.0’ ?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<ns1:echo

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://.../axis/services/EchoService">

<in0 xsi:type="xsd:string">Hello World</in0>
</ns1:echo>

</soapenv:Body>
</soapenv:Envelope>

SOAP Request

<?xml version=‘1.0’ ?>
<soapenv:Envelope

xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<ns1:echoResponse

soapenv:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
xmlns:ns1="http://../axis/services/echoService">

<echoReturn xsi:type=“String“> Hello World</echoReturn>
</ns1:echoResponse>

</soapenv:Body>
</soapenv:Envelope>

SOAP Response

SOAP Structure
• SOAP structure is very

simple.
– 0 or more headers elements
– 1 body element
– Envelop that wraps it all.

• Body contains XML
payload.

• Headers are structured the
same way.
– Can contain additional

payloads of “metadata”
– Security information,

quality of service, etc.

Envelope

Body

Message
Payload

Header #1

Header #0

SOAP Schema Notes
• All of this is expressed formally

in the SOAP schema.
• XML on the right is taken

directly from the SOAP
schema.

• This just encodes the previously
stated rules.

• Also, note that the SOAP
envelope can contain other
attributes.
– <anyAttribute> tag is the

wildcard

<xs:complexType
name="Envelope">

<xs:sequence>
<xs:element ref="tns:Header"

minOccurs="0" />
<xs:element ref="tns:Body"

minOccurs="1" />
</xs:sequence>
<xs:anyAttribute

namespace="##other"
processContents="lax" />

</xs:complexType>

Options on <xsd:any/>
(From DBC’s Schema Lectures)

• The <xsd:any/> element takes the usual optional maxOccurs,
minOccurs attributes.

• Allows a namespace attribute taking one of the values:
– ##any (the default),
– ##other (any namespace except the target namespace),
– List of namespace names, optionally including either

##targetNamespace or ##local.
Controls what elements the wildcard matches, according to
namespace.

• It also allows a processContents attribute taking one of the
values strict, skip, lax (default strict), controlling the extent to
which the contents of the matched element are validated.

Lax

• “If the item, or any items among its children
if it's an element information item, has a
uniquely determined declaration available,
it must be ·valid· with respect to that
definition.”

• That is, ·validate· where you can, don't
worry when you can't.

SOAP Envelop
• The envelop is the root container of the SOAP message.
• Things to put in the envelop:

– Namespaces you will need.
• http://schemas.xmlsoap.org/soap/envelope is required, so that the

recipient knows it has gotten a SOAP message.
• Others as necessary

– Encoding rules (optional)
• Specific rules for deserializing the encoded SOAP data.
• More later on this.

• Header and body elements.
– Headers are optional, body is mandatory.
– Headers come first in the message, but we will look at the body

first.

SOAP Headers
• SOAP Body elements contain the primary message contents.
• Headers are really just extension points where you can include

elements from other namespaces.
– i.e., headers can contain arbitrary XML.

• Headers may be processed independently of the body.
• Headers may optionally define encodingStyle.
• Headers may optionally have a “role” attribute
• Header entries may optionally have a “mustUnderstand” attribute.

– mustUnderstand=1 means the message recipient must process the header
element.

– If mustUnderstand=0 or is missing, the header element is optional.

Header Definition From SOAP
Schema

<xs:element name="Header" type="tns:Header" />
<xs:complexType name="Header">

<xs:annotation>
<xs:documentation>Elements replacing the wildcard MUST be

namespace qualified, but can be in the
targetNamespace</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax" />

</xs:complexType>

Example Uses of Headers
• Security: WS-Security and SAML place additional security

information (like digital signatures and public keys) in the
header.

• Quality of Service: SOAP headers can be used if we want
to negotiate particular qualities of service such as reliable
message delivery and transactions.
– We will look at reliable messaging in detail in a future lecture.

• Session State Support: Many services require several steps
and so will require maintenance of session state.
– Equivalent to cookies in HTTP.
– Put session identifier in the header.

Example Header from SOAP Primer
<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>
<m:reservation xmlns:m=“…"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d
</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00

</m:dateAndTime>
</m:reservation>
<n:passenger xmlns:n=“…"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">
<n:name>Åke Jógvan Øyvind</n:name>

</n:passenger>
</env:Header>

Explanation of Header Example

• In this particular case, we may imagine an
ongoing transaction for making an airline
reservation.
– Involves several steps and messages, so client must

remind the server of this state information when
sending a message.

– The actual header content all comes from other
namespaces.

• The role and mustUnderstand attributes are from
SOAP.

Header Processing
• SOAP messages are allowed to pass through many

intermediaries before reaching their destination.
– Intermediary=some unspecified routing application.
– The final destination processes the body of the message.

• Headers are allowed to be processed independently of the
body.
– May be processed by intermediaries.

• This allows an intermediary application to determine if it
can process the body, provide the required security,
session, or reliability requirements, etc.

Header Roles

• SOAP nodes may be assigned role designations.
• SOAP headers then specify which role or roles

should process.
• Standard SOAP roles:

– None: SOAP nodes MUST NOT act in this role.
– Next: Each SOAP intermediary and the ultimate SOAP

receiver MUST act in this role.
– UltimateReceiver: The ultimate receiver MUST act in

this role.
• In our example, all nodes must process the header

entries.

SOAP Body

• Body entries are really just placeholders for XML
from some other namespace.

• The body contains the XML message that you are
transmitting.

• It may also define encodingStyle, just as the
envelop.

• The message format is not specified by SOAP.
– The <Body></Body> tag pairs are just a way to notify

the recipient that the actual XML message is contained
therein.

– The recipient decides what to do with the message.

SOAP Body Element Definition

<xs:element name="Body" type="tns:Body" />
<xs:complexType name="Body">

<xs:sequence>
<xs:any namespace="##any"

processContents="lax" minOccurs="0“
maxOccurs="unbounded" />

</xs:sequence>
<xs:anyAttribute namespace="##other"

processContents="lax" />
</xs:complexType>

SOAP Body Example

<soapenv:Body>
<ns1:echo soapenv:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1=

"http://.../axis/services/EchoService">
<in0 xsi:type="xsd:string">Hello
World</in0>

</ns1:echo>
</soapenv:Body.

Example SOAP Body Details

• The <Body> tag is extended to include elements
defined in our Echo Service WSDL schema.

• This particular style is called RPC.
– Maps WSDL bindings to SOAP body elements.
– Guidelines will be given in next lecture.

• xsi-type is used to specify that the <in0> element
takes a string value.
– This is data encoding
– Data encoding rules will also be examined in next

lectures.

When Things Go Wrong
• One of the precepts of distributed

computing is that things will go
wrong in any operational system.

– Servers will fail, networks will go
down, services will change or go
away.

• Need a way to communicate
failures back to message
originators.

– Consider HTTP faults
• SOAP Provides its own fault

communication mechanism.
• These may be in addition to HTTP

errors when we use SOAP over
HTTP.

• HTTP Error Messages
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-Out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URL Too Large
415 Unsupported Media Type
500 Server Error
501 Not Implemented
502 Bad Gateway
503 Out of Resources
504 Gateway Time-Out
505 HTTP Version not supported

SOAP Fault Scenarios
• HTTP errors will take precedence.

– Involve message transmission problems.
• SOAP errors occur during the processing of the message.

– HTTP 500 Internal Server Error
• Faults can occur when

– You sent an improperly formatted message that the service can’t
process (an integer instead of a string, for example).

– There is a SOAP version mismatch
• You sent SOAP 1.2 and I understand SOAP 1.0

– You have a “must understand” header that can’t be understood.
– You failed to meet some required quality of service specified by a

header.

Sample SOAP Fault
From SOAP Primer

<env:Body>
<env:Fault>

<env:Code>
<env:Value>env:Sender</env:Value>
<env:Subcode>

<env:Value>rpc:BadArguments</env:Value>
</env:Subcode>

</env:Code>
<env:Reason>

<env:Text xml:lang="en-US">Processing error</env:Text>
</env:Reason>
<env:Detail>

<e:myFaultDetails> ...</e:myFaultDetails>
</env:Detail>

</env:Fault>
</env:Body>

Fault Structure from SOAP Schema

• Fault messages are
included in the
<body>.

• <Code> and
<Reason> are
required.

• <Node>,<Role>, and
<Detail> are optional.

<xs:element name="Fault" type="tns:Fault"
/>

<xs:complexType name="Fault“
final="extension">
<xs:sequence>

<xs:element name="Code“
type="tns:faultcode" />

<xs:element name="Reason"
type="tns:faultreason" />

<xs:element name="Node"
type="xs:anyURI“ minOccurs="0" />

<xs:element name="Role"
type="xs:anyURI" minOccurs="0" />

<xs:element name="Detail“
type="tns:detail" minOccurs="0" />

</xs:sequence>
</xs:complexType>

SOAP Fault Codes

• These are one of the
required subelements of
Faults.

• They must contain one of
the standard fault code
enumerations (next slide).

• They may also contain
subcodes.
– For more detailed error

messages.

<xs:complexType
name="faultcode">

<xs:sequence>
<xs:element

name="Value"
type="tns:faultcodeEnum" />

<xs:element name="Subcode"
type="tns:subcode"
minOccurs="0" />

</xs:sequence>
</xs:complexType>

Enumerating Faults
• Fault codes must contain one of the

standard fault messages.
• DataEncodingUnknown: you sent

data encoded in some format that I
don’t understand.

• MustUnderstand: I don’t support
this header.

• Receiver: message was correct, but
receiver could not process for some
reason.

• Sender: message was incorrectly
formatted, or lacked required
additional information

– Couldn’t authenticate you
• VersionMismatch: I don’t support

your version of SOAP.

<xs:simpleType name="faultcodeEnum">
<xs:restriction base="xs:QName">

<xs:enumeration
value="tns:DataEncodingUnkno

wn" />
<xs:enumeration

value="tns:MustUnderstand" />
<xs:enumeration

value="tns:Receiver" />
<xs:enumeration

value="tns:Sender" />
<xs:enumeration

value="tns:VersionMismatch" />
</xs:restriction>

</xs:simpleType>

Fault Subcodes
• Fault codes may contain

subcodes that refine the
message.

• Unlike Codes, subcodes
don’t have standard
values.
– Instead, they can take any

QName value.
– This is an extensibility

mechanism.
• Subcodes may contain

other subcodes.

<env:Code>
<env:Value>env:Sender
</env:Value>
<env:Subcode>

<env:Value>rpc:Bad
Arguments

</env:Value>
</env:Subcode>

</env:Code>

Fault Reasons
• This is intended to provide

human readable reasons
for the fault.

• The reason is just a simple
string determined by the
implementer.
– For Axis, this is the Java

exception name.
– At least, for my version of

Axis.
• We must also provide at

least one language.

<xs:complexType name="faultreason">
<xs:sequence>

<xs:element name="Text"
type="tns:reasontext"
minOccurs="1"
maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>
<xs:complexType name="reasontext">

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute ref="xml:lang"
use="required" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

Optional Fault Elements
• Code and Reason are required.
• Node, Role, and Detail are

optional
• Node and Role are used in

SOAP processing steps that we
have lightly covered.
– SOAP messages may go

through several intermediaries.
• Nodes and roles are needed in

case a fault occurs in an
intermediary.
– Return the URI of the node and

role
• Details will be described.

Source

Dest.

Node 1

Node 2

“I Check
AuthN”

“I Check
AuthZ”

Fault Detail
• A fault detail is just an

extension element.
– Carries application specific

information
• It can contain any number of

elements of any type.
• This is intended for the SOAP

implementer to put in specific
information.
– You can define your own

SOAP fault detail schemas
specific to your application.

• Axis, for example, includes
Java exception stack traces.

<xs:complexType name="detail">
<xs:sequence>
<xs:any namespace="##any"
processContents="lax"
minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>
<xs:anyAttribute
namespace="##other"
processContents="lax" />

</xs:complexType>

Next Time

• This lecture has examined the basic SOAP
message format.

• We have not described the following:
– The rules for encoding transmitted data

• Specifically, how do I encode XML for RPC?
• How does this connect to WSDL?

– The rules for transmitting messages.

• I also want to give a specific example of extending
SOAP to support reliable messaging.

