
SOAP II: Data Encoding

Marlon Pierce, Bryan Carpenter, Geoffrey Fox
Community Grids Lab

Indiana University
mpierce@cs.indiana.edu

http://www.grid2004.org/spring2004

Review: SOAP Message Payloads

• SOAP has a very simple structure:
– Envelopes wrap body and optional header elements.

• SOAP body elements may contain any sort of XML
– Literally, use <any> wildcard to include other XML.

• SOAP does not provide specific encoding restrictions.
• Instead, provides conventions that you can follow for

different message styles.
– RPC is a common convention.

• Remember: SOAP designers were trying to design it to
be general purpose.
– SOAP encoding and data models are optional

SOAP Data Models

SOAP’s Abstract Data Model
• SOAP data may be optional

represented using Node-Edge
Graphs.

• Edges connect nodes
– Have a direction
– An edge is labeled with an

XML QName.
• A node may have 0 or more

inbound and outbound edges.
• Implicitly, Node 2 describes

Node 1.
• A few other notes:

– Nodes may point to
themselves.

– Nodes may have inbound
edges originating from more
than one Node.

Node 1

Node 2

Edge

Node 3

Nodes and Values
• Nodes have values.

– Values may be either simple
(lexical) or compound.

• A simple value may be (for
example) a string.
– It has no outgoing edges

• A complex value is a node with
both inbound and outbound
edges.

• For example, Node 1 has a
value, Node 2, that is
structured.

• Complex values may be either
structs or arrays.

Node 1

Node 2
(complex)

Node 3 Node 4

Complex Types: Structs and Arrays

• A compound value is a graph node with zero or
more outbound edges.

• Outbound edges may be distinguished by either
labels or by position.

• Nodes may be one of two sorts:
– Struct: all outbound edges are distinguished solely by

labels.
– Array: all outbound edges are distinguished solely by

position order.
• Obviously we are zeroing in on programming

language data structures.

Abstract Data Models
• The SOAP Data Model is an abstract model

– Directed, labeled graph
• It will be expressed in XML.
• The graph model implies semantics about data

structures that are not in the XML itself.
– XML describes only syntax.

• Implicitly, nodes in the graph model resemble
nouns, while the edges represent predicates.

• We will revisit this in later lectures on the
Semantic Web.

Graphs to XML

• SOAP nodes and edges are not readily apparent
in simple XML encoding rules.
– Normally, an XML element in the SOAP body acts as

both the edge and the node of the abstract model.
• However, SOAP does have an internal

referencing system.
– Use it when pointing from one element to another.
– Here, the XML-to-graph correspondence is more

obvious.

SOAP Encoding

Intro: Encoding Conventions
• SOAP header and body tags

can be used to contain
arbitrary XML
– Specifically, they can contain

an arbitrary sequence of tags,
replacing the <any> tag.

– These tags from other
schemas can contain child
tags and be quite complex.

– See body definition on the
right.

• And that’s all it specifies.
• SOAP thus does not impose a

content model.
• Content models are defined by

convention and are optional.

<xs:element name="Body"
type="tns:Body" />

<xs:complexType name="Body">
<xs:sequence>

<xs:any
namespace="##any"
processContents="lax"

minOccurs="0“
maxOccurs="unbounded"

/>
</xs:sequence>
<xs:anyAttribute

namespace="##other"
processContents="lax" />

</xs:complexType>

Encoding Overview
• Data models such as the SOAP graph model are abstract.

– Represented as graphs.
• For transfer between client and server in a SOAP message, we

encode them in XML.
• We typically should provide encoding rules along with the message

so that the recipient knows how to process.
• SOAP provides some encoding rule definitions:

– http://schemas.xmlsoap.org/soap/encoding/
– But these rules are not required and must be explicitly included.
– Note this is NOT part of the SOAP message schema.

• Terminology:
– Serialization: transforming a model instance into an XML instance.
– Deserialization: transforming the XML back to the model.

Specifying Encoding
• Encoding is specified using the

encodingStyle attribute.
– This is optional
– There may be no encoding style

• This attribute can appear in the
envelope, body, or headers.

– The example from previous
lecture puts it in the body.

– The value is the standard SOAP
encoding rules.

• Thus, each part may use different
encoding rules.

– If present, the envelope has the
default value for the message.

– Headers and body elements may
override this within their scope.

<soapenv:Body>
<ns1:echo

soapenv:encodingStyle="http://
schemas.xmlsoap.org/soap/enc
oding/"
xmlns:ns1=“…">
<!--
The rest of the payload
-->

</soapenv:Body>

Encoding Simple Values

• Our echo service exchanges strings. The actual
message is encoded like this:
– <in0 xsi:type="xsd:string">Hello World</in0>

• xsi:type means that <in0> will take string values.
– And string means explicitly xsd:string, or string from

the XML schema itself.
• In general, all encoded elements should provide

xsi:type elements to help the recipient decode
the message.

Simple Type Encoding Examples

Java examples
• int a=3;
• float pi=3.14
• String s=“Hello”;

SOAP Encoding
• <a xsi:type=“xsd:int”>

10

• <pi xsi:type=“xsd:float”>

3.14
</pi>

• <s xsi:type=“xsd:string”>
Hello

</s>

Explanation of Simple Type
Encoding

• The XML snippets have two namespaces (would
be specified in the SOAP envelope typically).
– xsd: the XML schema. Provides definitions of

common simple types like floats, ints, and strings.
– xsi: the XML Schema Instance. Provides the

definition of the type element and its possible values.
• Basic rule: each element must be given a type

and a value.
– Types come from XSI, values from XSD.

• In general, all SOAP encoded values must have
a type.

XML Schema Instance

• A very simple supplemental XML schema that
provides only four attribute definitions.

• Type is used when an element needs to
explicitly define its type rather than implicitly,
through a schema.
– The value of xsi:type is a qualified name.

• This is needed when the schema may not be
available (in case of SOAP).
– May also be needed in schema inheritance

• See earlier XML schema lectures on “Polymorphism”

Example for Encoding Arrays in
SOAP 1.1

• Java Arrays
– int[3] myArray={23,10,32};

• Possible SOAP 1.1 Encoding:
<myArray xsi:type=“SOAP-ENC:Array

SOAP-ENC:arrayType=“xsd:int[3]”>
<v1>21</v1>
<v2>10</v2>
<v3>32</v3>

</myArray>

An Explanation
• We started out as before, mapping the Java

array name to an element and defining an
xsi:type.

• But there is no array in the XML schema data
definitions.
– XSD doesn’t preclude it, but it is a complex type to be

defined elsewhere.
– The SOAP encoding schema defines it.

• We also made use of the SOAP encoding
schema’s arrayType attribute to specify the type
of array (3 integers).

• We then provide the values.

Encoding a Java Class in SOAP

• Note first that a general Java class (like a Vector
or BufferedReader) does not serialize in XML.

• But JavaBeans (or if you prefer, Java data
objects) do serialize.
– A bean is a class with accessor (get/set) methods

associated with each of its data types.
– Can be mapped to C structs.

• XML Beans and Castor are two popular Java-to-
XML converters.

Example of Encoding a Java Bean

• Java class
class MyBean {

String Name=“Marlon”;
public String getName() {return Name;}
public void setName(String n) {Name=n;}

}
• Possible SOAP Encoding of the data (as a

struct)
<MyBean>

<name xsi:type=“xsd:string”>Marlon</name>
</MyBean>

Structs
• Structs are defined in the

SOAP Encoding schema
as shown.

• Really, they just are used
to hold yet more
sequences of arbitrary
XML.

• Struct elements are
intended to be accessed
by name
– Rather than order, as

Arrays.

<xs:element name="Struct"
type="tns:Struct" />

<xs:group name="Struct">
<xs:sequence>

<xs:any namespace="##any"
minOccurs="0"
maxOccurs="unbounded"
processContents="lax" />

</xs:sequence>
</xs:group>

<xs:complexType name="Struct">
<xs:group ref="tns:Struct"

minOccurs="0" />
<xs:attributeGroup

ref="tns:commonAttributes" />
</xs:complexType>

SOAP 1.1 Arrays
• As stated several times,

SOAP encoding includes
rules for expressing
arrays.

• These were significantly
revised between SOAP
1.1 and SOAP 1.2.

• You will still see both
styles, so I’ll cover both.

• The basic array type
(shown) was intended to
hold 0 or 1 Array groups.

<xs:complexType
name="Array">

<xs:group ref="tns:Array"
minOccurs="0" />

<xs:attributeGroup
ref="tns:arrayAttribut
es" />

<xs:attributeGroup
ref="tns:commonAttri
butes" />

</xs:complexType>

SOAP 1.1 Array Group
• Array elements contain

zero or more array
groups.

• The array group in turn is
a sequence of <any>
tags.

• So the array group can
hold arbitrary XML.

<xs:group name="Array">
<xs:sequence>
<xs:any

namespace="##any"
minOccurs="0"
maxOccurs="unbounded"
processContents="lax" />

</xs:sequence>
</xs:group>

SOAP 1.1 Array Attributes
• The array group itself is just for

holding arbitrary XML.
• The array attributes are used to

further refine our definition.
• The array definition may provide

an arrayType definition and an
offset.

• Offsets can be used to send
partial arrays.

• According to the SOAP Encoding
schema itself, these are only
required to be strings.

<xs:attributeGroup
name="arrayAttributes">

<xs:attribute ref="tns:arrayType" />
<xs:attribute ref="tns:offset" />
</xs:attributeGroup>

<xs:attribute name="offset"
type="tns:arrayCoordinate" />

<xs:attribute name="arrayType"
type="xs:string" />

<xs:simpleType
name="arrayCoordinate">
<xs:restriction base="xs:string" />

</xs:simpleType>

Specifying Array Sizes in SOAP 1.1

• The arrayType specifies only that the it takes a string
value.

• The SOAP specification (part 2) does provide the rules.
• First, it should have the form enc:arraySize.

– Encoding can be an XSD type, but not necessarily.
– Ex: xsd:int[5], xsd:string[2,3], p:Person[5]
– The last is an array of five persons, defined in p.

• Second, use the following notation:
– [] is a 1D array.
– [][] is a array of 1D arrays
– [,] is a 2D array.
– And so on.

Encoding Arrays in SOAP 1.2
• Array encodings have been

revised and simplified in the
latest SOAP specifications.
– http://www.w3.org/2003/05/so

ap-encoding
• ArrayType elements are

derived from a generic
nodeType element.

• Now arrays have two attributes
– itemType is the the type of the

array (String, int, XML
complex type).

– arraySize

<xs:attribute name="arraySize"
type="tns:arraySize" />

<xs:attribute name="itemType"
type="xs:QName" />

<xs:attributeGroup
name="arrayAttributes">

<xs:attribute ref="tns:arraySize"
/>

<xs:attribute ref="tns:itemType"
/>

</xs:attributeGroup>

SOAP 1.2 Array Sizes
• The arraySize attribute (shown below). The

regular expression means
– I can use a “*” for an unspecified size, OR
– I can specify the size with a range of digits
– I may include multiple groupings of digits for multi-

dimensional arrays, with digit groups separated by
white spaces.

<xs:simpleType name="arraySize">
<xs:restriction base="tns:arraySizeBase">

<xs:pattern value="(*|(\d+))(\s+\d+)*" />
</xs:restriction>

</xs:simpleType>

Comparison of 1.1 and 1.2 Arrays

<numbers
enc:arrayType="xs:int[2]">
<number>3
</number> <number>4
</number>

</numbers>

<numbers
enc:itemType="xs:int"
enc:arraySize="2">
<number>3
</number> <number>4
</number>

</numbers>

SOAP 1.1 Encoding’s Common
Attributes

• As we have seen, both
structs and arrays contain
a group called
commonAttributes.

• The definition is shown at
the right.

• The ID and the HREF
attributes are used to
make internal references
within the SOAP
message payload.

<xs:attributeGroup
name="commonAttribute
s">

<xs:attribute name="id"
type="xs:ID" />

<xs:attribute name="href"
type="xs:anyURI" />

<xs:anyAttribute
namespace="##other"
processContents="lax" />

</xs:attributeGroup>

References and IDs
• As you know, XML provides a simple tree model for

data.
• While you can convert many data models into trees, it

will lead to redundancy.
• The problem is that data models are graphs, which may

be more complicated than simple trees.
• Consider a typical manager/employee data model.

– Managers are an extension of the more general employee class.
– Assume in following example we have defined an appropriate

schema.

Before/After Referencing
(SOAP 1.1 Encoding)

<manager>
<fname>Geoffrey</>
<lname>Fox</>

</manager>
<employee>

<fname>Marlon</>
<lname>Pierce</>
<manager>

<fname>Geoffrey</>
<lname>Fox</>

</manager>
</employee>

<manager id=“GCF”>
<fname>Geoffrey</>
<lname>Fox</>

</manager>
<employee>

<fname>Marlon</>
<lname>Pierce</>
<manager href=“#gcf”>

</employee>

References, IDs and Graphs
• References serve two

purposes.
– They save space by

avoiding duplication
• A good thing in a

message.
– They lower the potential for

errors.
• They also return us to the

graph model.
– Normal nodes and edges

get mapped into one
element information item.

– Ref nodes actually split the
edge and node.

employee

manager

href=“#gcf”

References in SOAP 1.2
• SOAP 1.1 required all

references to point to
other top level elements.

• SOPA 1.2 changed this,
so now refs can point to
child elements in a graph
as well as top level
elements.
– See next figure

• They also changed the
tag names and values, so
the encoding looks
slightly different.

<manager id=“GCF”>
<fname>Geoffrey</>
<lname>Fox</>

</manager>
<employee>

<fname>Marlon</>
<lname>Pierce</>
<manager ref=“gcf”>

</employee>

SOAP 1.1 and 1.2 Refs
<e:Books>
<e:Book>
<title>My Life and Work </title>

<author href="#henryford" />
</e:Book>

<e:Book>
<title>Today and

Tomorrow</title>
<author href="#henryford" />
</e:Book>
</e:Books>

<author id="henryford">
<name>Henry Ford</name>

</author>

<e:Books>
<e:Book>
<title>My Life and Work </title>
<author id="henryford" >

<name>Henry Ford</name>
</author>

</e:Book>
<e:Book>

<title>Today and Tomorrow
</title>
<author ref="henryford" />

</e:Book>
</e:Books>

Using SOAP for Remote
Procedure Calls

The Story So Far…
• We have defined a general purpose abstract

data model.
• We have looked at SOAP encoding.

– SOAP does not provide standard encoding rules, but
instead provides a pluggable encoding style attribute.

• We examined a specific set of encoding rules
that may be optionally used.

• We are now ready to look at a special case of
SOAP encodings suitable for remote procedure
calls (RPC).

Requirements for RPC with SOAP

• RPC is just a way to
invoke a remote
operation and get some
data back.
– All of your Web Service

examples use RPC
• How do we do this with

SOAP? We encode
carefully to avoid
ambiguity.

• But it really is just
common sense.

• Information needed for
RPC:
– Location of service
– The method name
– The method values

• The values must be
associated with the
method’s argument
names.

Location of the Service
• Obviously the SOAP message needs to get

sent to the right place.
• The location (URL) of the service is not

actually encoded in SOAP.
• Instead, it is part of the transport protocol used

to carry the SOAP message.
• For SOAP over HTTP, this is part of the HTTP

Header:
POST /axis/service/echo HTTP/1.0
Host: www.myservice.com

RPC Invocation

• Consider the remote invocation of the following
Java method:
– public String echoService(String toEcho);

• RPC invocation conventions are the following:
– The invocation is represented by a single struct.
– The struct is named after the operation (echoService).
– The struct has an outbound edge for each transmitted

parameter.
– Each transmitted parameter is an outbound edge with

a label corresponding to the parameter name.

SOAP Message by Hand
<env:Envelope xmlns:env=“…” xmlns:xsd=“…”

xmlns:xsi=“…”
env:encodingStyle=“…”>

<env:Body>
<e:echoService xmlns:e=“…”>

<e:toEcho xsi:type=“xsd:string”>Hello
</e:toEcho>

</e:echoService>
</env:Body>

</env:Envelope>

Notes
• I have omitted the namespace URIs, but you

should know that they are the SOAP, XML, and
XSI schemas.

• I also omitted the encoding style URI, but it is
the SOAP encoding schema.
– Required by RPC convention.

• I assume there is a namespace (e:) that defines
all of the operation and parameter elements.

• The body follows the simple rules:
– One struct, named after the method.
– One child element for each input parameter.

RPC Responses

• These follow similar rules as requests.
– We need one (and only one) struct for the remote

operation.
– This time, the label of the struct is not important.
– This struct has one child element (edge) for each

argument.
– The child elements are labeled to correspond to the

operational parameters.
• The response may also distinguish the “return”

value.

RPC Return Values

• Often in RPC we need to distinguish one of the
output values as the “return value”.
– Legacy of C and other programming languages.

• We do this by labeling the return type like this:
<rpc:result>ex:myReturn</rpc:result>
<ex:myReturn xsi:type=“xsd:int”>0</>

• The rpc namespace is
– http://www.w3c.org/2003/05/soap-rpc

An RPC Response
<env:Envelope xmlns:env=“…” xmlns:xsd=“…”

xmlns:xsi=“…” env:encodingStyle=“…”>
<env:Body>

<e:echoResponse
xmlns:rpc=“…”
xmlns:e=“…”>

<rpc:result>e:echoReturn</rpc:result>
<e:echoReturn xsi:type=“xsd:string”>

Hello
</e:echoReturn>

</e:echoResponse>
</env:Body>

</env:Envelope>

Going Beyond Simple Types

• Our simple example just communicates in single
strings.

• But it is straightforward to write SOAP encodings
for remote procedures that use
– Single simple type arguments of other types (ints,

floats, and so on).
– Arrays
– Data objects (structs)
– Multiple arguments, both simple and compound.

Discovering the Descriptions for
RPC

• The RPC encoding rules are based on
some big assumptions:
– You know the location of the service.
– You know the names of the operations.
– You know the parameter names and types of

each operation.
• How you learn this is out of SOAP’s

scope.
• WSDL is one obvious way.

Relation to WSDL Bindings

• Recall from last WSDL lecture that the
<binding> element binds WSDL portTypes
to SOAP or other message formats.

• Binding to SOAP specified the following:
– RPC or Document Style
– HTTP for transport
– SOAP encoding for the body elements

The WSDL Binding for Echo
<wsdl:binding name="EchoSoapBinding" type="impl:Echo">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="echo">

<wsdlsoap:operation soapAction="" />
<wsdl:input name="echoRequest">

<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/so ap/encoding/"

namespace=“…" use="encoded" />
</wsdl:input>
<wsdl:output name="echoResponse">

<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace=“…" use="encoded" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

RPC Style for Body Elements
• The body element just contains

XML.
• Our WSDL specified RPC style

encoding.
– So we will structure our body

element to look like the WSDL
method.

• First, the body contains an
element <echo> that corresponds
to the remote comnand.

– Using namespace ns1 to connect
<echo> to its WSDL definition

• Then the tag contains the element
<in0> which contains the payload.

<soapenv:Body>
<ns1:echo

soapenv:encodingStyle=""
xmlns:ns1="">

<in0 xsi:type="xsd:string">
Hello World

</in0>
</ns1:echo>
</soapenv:Body>

Connection of WSDL Definitions
and SOAP Message for RPC

<wsdl:portType name="Echo">
<wsdl:operation name="echo"

parameterOrder="in0”>
<wsdl:input
message="impl:echoRequest

name="echoRequest" />
</wsdl:operation>

</wsdl:portType>

<soapenv:Body>
<ns1:echo

soapenv:encodingStyle=""
xmlns:ns1="">

<in0 xsi:type="xsd:string">
Hello World

</in0>
</ns1:echo>
</soapenv:Body>

<<wsdl:messagewsdl:message
name="name="echoRequestechoRequest">">
<<wsdl:partwsdl:part name="name="in0in0" "

type="type="xsd:stringxsd:string" /> " />
</</wsdl:messagewsdl:message>>

WSDL-RPC Mappings for
Response

<wsdl:portType name="Echo">
<wsdl:operation name="echo"

parameterOrder="in0">
…

<wsdl:output
message="echoResponse”
name="echoResponse" />

</wsdl:operation>
</wsdl:portType>

<wsdl:message
name="echoResponse">

<wsdl:part name="echoReturn"
type="xsd:string" />

</wsdl:message>

<soapenv:Body>
<ns1:echoResponse

env:encodingStyle=“…”
xmlns:ns1=“…">
<echoReturn xsi:type=“String“>

Hello World
</echoReturn>

</ns1:echoResponse>
</soapenv:Body>

Alternative Encoding
Schemes

Wrap Up
• As we have seen, SOAP itself does not provide

encoding rules for message payloads.
– Instead, it provides a pluggable encoding style

attribute.
• SOAP encoding rules are optional, but likely to

be commonly supported in software like Axis.
• SOAP encoding’s three main parts for RPC:

– Abstract Data Model
– XML Encoding of model
– Further conventions for RPC

• What about other encodings?

Alternative Encoding Schemes
• SOAP encoding uses graph models for data but,

apart from references, does not explicitly map
the parts of the graph to different XML elements.

• There are other XML data encoding schemes
that make a much more explicit connection
between the graph and the encoding.

• The Resource Description Framework is one
such scheme.

• So we may choose to use RDF instead of SOAP
encoding in a SOAP message.

RDF Encoding Example of Echo
<?xml version=‘1.0’ ?>
<env:Envelope xmlns:env=“…”>
<env:Body

env:encodingStyle=“http://www.w3c.org/1999/02/22-rdf-syntax-
ns#”>
<rdf:RDF>

<rdf:Description about=“echo service uri”>
<e:echoService>

<e:in0>Hello</e:in0>
</e:echoService>

</rdf:Description>
</rdf:RDF>

</env:Body>
</env:Envelope>

RDF Encoding Notes
• We will look at RDF in detail in next week’s

lectures.
• Basic idea is that <rdf:Description> tags are

envelopes for xml tags from other schemas.
• The <Description>’s about attribute tells you

what is being described.
• Note that standard Web Service engines do not

support RDF or other encodings.
– You would need to extend it yourself.
– But it is possible.

