
SOAP Routing and
Processing Concepts
Marlon Pierce, Bryan Carpenter, Geoffrey Fox

Community Grids Lab
Indiana University

mpierce@cs.indiana.edu
http://www.grid2004.org/spring2004

SOAP Processing Assumptions
• SOAP assumes

messages have an
originator, one or more
ultimate receivers, and
zero or more
intermediaries.

• The reason is to support
distributed message
processing.

• That is, we can go
beyond client-server
messaging.

Originator Recipient

Intermediary

Intermediary

Intermediary

Processing and SOAP Structure
• SOAP processing rules are directly related to the SOAP

message envelope:
– The Body is only for final recipients.
– Header sections may be processed by one or more

intermediaries as well as final recipient nodes.
– SOAP headers are the extensibility elements for defining other

features.
• The Header therefore has three optional attributes:

– Role (called actor in SOAP 1.0 and 1.1): Determines is a header
should process a particular header.

– mustUnderstand: If set to “true”, the node must know how to
process the header.

– Relay: Indicates whether or not an unprocessed header block
should be forwarded.

Example Uses of Headers
• Security: WS-Security and SAML place additional

security information (like digital signatures and public
keys) in the header.

• Quality of Service: SOAP headers can be used if we
want to negotiate particular qualities of service such as
reliable message delivery and transactions.
– Reliable Message is one example.

• Session State Support: Many services require several
steps and so will require maintenance of session state.
– Equivalent to cookies in HTTP.
– Put session identifier in the header.

Example Header from SOAP
Primer

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-

envelope">
<env:Header>

<m:reservation xmlns:m=“…"
env:role="http://www.w3.org/2003/05/soap-

envelope/role/next" env:mustUnderstand="true">
<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d

</m:reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00

</m:dateAndTime>
</m:reservation>

<n:passenger xmlns:n=“…"
env:role="http://www.w3.org/2003/05/soap-

envelope/role/next" env:mustUnderstand="true">
<n:name>Åke Jógvan Øyvind</n:name>

</n:passenger>
</env:Header>

SOAP Nodes and Roles
• Originators, recipients, and receivers of SOAP messages are all

called SOAP Nodes.
– Each node is labeled with a URI

• For a particular message, the Node can act in one or more SOAP
Roles.
– Each role is labeled with a URI
– The following table list predefined roles.

• You can define your own roles
– “Log message” role
– “Check authorization” role

• When a node receives a message, it must examine the message for
a role definition and process the headers as required.

• The SOAP specification itself does not specify how you assign a
role to a node.
– This depends upon the implementation.

Standard SOAP 1.2 Roles

The ultimate receiver MUST act in this
role. If no role is specified in a header, it
is treated as being in this role.

"http://www.w3.org/2003
/05/soap-
envelope/role/ultimateR
eceiver"

ultimateRecei
ver

SOAP nodes MUST NOT act in this
role. That is, the header block should
not be directly processed. It may carry
supplemental information.

"http://www.w3.org/2003
/05/soap-
envelope/role/none"

none

Each SOAP intermediary and the
ultimate SOAP receiver MUST act in
this role.

"http://www.w3.org/2003
/05/soap-
envelope/role/next"

next

DescriptionNameShort-name

Understanding Headers
• SOAP role definitions may require SOAP nodes to

process headers.
• In a distributed processing model, it is possible that

certain nodes will not have the required capability to
process the header.

• We must therefore identify a header as optional or
required.

• We do this with the mustUnderstand attribute.
– If true, the node must process the header or else stop

processing and return a Fault message.
– If false, the header is optionally processed, depending on the

role of the node. This is the default value.
• The SOAP specification requires that a node identify all

required headers and determine if they are understood
before any processing takes place.

Relaying SOAP Messages
• As we have seen, SOAP headers may or may not be

processed by an intermediate node.
– mustUnderstand and role attributes determine this.

• Processed headers must be removed from the SOAP
message before forwarding.

• But there are times when a node role indicates
processing, but processing is optional.
– Role is “next” but mustUnderstand=“false”

• What happens to these headers?
• SOAP 1.2 defines an optional attribute called “relay” to

resolve this.
– Relay is a boolean attribute.

Summary of Relay Forwarding

Yesn/aNonone
n/aNo
n/aYes

YesultimateRec
eiver

Yesn/aNo

No, unless relay
="true"No

No, unless reinsertedYes
Yes

user-defined

No, unless relay
="true"No

No, unless reinsertedYes
Yesnext

ForwardedUnderstood & ProcessedAssumedShort-name
Header blockRole

SOAP Intermediaries
• Forwarding Intermediaries:

– Are used to route messages to other SOAP nodes,
based on header information.

– May do additional processing as described in a SOAP
header.

• Active Intermediaries do additional processing to
a message that is NOT described in any of the
message headers.
– For example, may insert additional headers needed

for additional processing, or may encrypt parts of the
message for security.

SOAP Forwarding Intermediaries

• As we have seen, a forwarding intermediary must do the
following:
– Process any headers as required by its role and

mustUnderstand.
– Relay any unprocessed headers.

• It is also required by the spec to
– Remove all processed header blocks.
– Remove all unprocessed and non-relayable header blocks.

• Forwarding Intermediaries may also insert new headers.
– This may be a reinsertion of a processed header, for example.
– Oddly, there seems to be no built-in way to label a header as

“persistent”.

SOAP + HTTP

A Quick HTTP Lesson
• HTTP is an ASCII

request and response
protocol.

• You can easily send
HTTP messages to
your favorite website
and get a response.

• Type this:
– telnet www.cnn.com

80
• Then type

– GET / HTTP/1.0
• Hit enter twice.
• You’ll get back the

HTML for CNN’s
home page.

Putting SOAP into HTTP
• Assume that I know the

port of a particular HTTP
server that speaks SOAP.

• Then I can easily
construct an HTTP
message with a SOAP
payload.

• Then write the message
to the remote socket.

POST /axis/service/echo
HTTP/1.0

Host: www.myservice.com
Content-Type: text/xml;

charset=“utf-8”
Content-Length: nnn
SOAPAction=“”
<SOAP:env>

…
</SOAP:evn>

What Does It Mean?
• The POST line specifies that we will use the POST

method and assume HTTP 1.0 (not HTTP 1.1).
– /axis/services/echo is the relative path part of the URL.
– Host is in on a separate line.

• Host: specifies the name of the host.
• Content-Type: Type of content we are sending.

– We must use text/xml for SOAP.
– In general these are called mime-types.

• Content-Length: number of characters in the HTTP
payload.

• SOAPAction: Recall this from our WSDL Binding
example.

SOAPAction
• In SOAP 1.0 this is required by all HTTP request

messages that transmit SOAP.
• It is optional in SOAP 1.1, deprecated in 1.2.
• It’s intended use is to tell the Web Server some

specific intended use.
– The server could use this to short circuit SOAP

message processing if the requested service was
unavailable.

• SOAPAction=“” means that the intended service
is identical to the relative path of the POST line.
– /axis/services/Echo

