
Secure Web Services

Geoffrey Fox, Marlon Pierce
Community Grids Lab

Indiana University

Introduction

• Techniques for securing messages and
authenticating communicators are centuries old.

• Securing Web Services has several parts
– XML Message Security Concepts
– Practical Implementations

• We will primarily examine the first.
• However, the WS-I profile concentrates heavily

on the second

Outline
• Security Concepts and Considerations

– Security concept classifications
– Threat classifications
– Scope
– Network security layers

• XML Message Security
– SOAP Message Security
– XML Digital Signatures
– XML Encryption

• WS-I Security Profile: Integrating XML Message Security with
transport security.

• Shibboleth and SAML
• Other Standards

– WS-Federation

Original Security Roadmap
• The original (2002) WS-Security road map is shown below.

– WS-Security-->SOAP Message Security
• A comprehensive list of specifications is available from

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/wssecurspecindex.asp

– WS-I is the crucible for these standards.
• We will concentrate on secure SOAP messages.

Source Material
• WS-I Basic Security Profile

– Working Group Draft: http://www.ws-i.org/Profiles/BasicSecurityProfile-
1.0-2004-05-12.html

– Security Scenarios: http://www.ws-i.org/Profiles/BasicSecurity/2004-
02/SecurityScenarios-0.15-WGD.mht

• SOAP Message Security 1.0:
– Specification: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

soap-message-security-1.0.pdf
– Schema: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd
• XML-Signature:

– Specification: http://www.w3.org/TR/xmldsig-core/
– Schema: http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd

• XML Encryption Specification: http://www.w3.org/TR/xmlenc-core/

Security Concepts and
Considerations

Review basic security ideas, threats,
and network architectures

Web Service Security Basic Picture

• Web Services operate by
exchanging (typically) SOAP
messages.

• These messages may travel
over secure network
connections
– Leverage typical Web security

techniques like certificates and
HTTPS

• The SOAP messages
themselves may be signed,
encrypted, and otherwise
secured.

• Note this picture does not show
any SOAP intermediaries.

Message
Originator

Message
Recipient

?SSL

Security Challenges for Web
Services

• The previous picture represents
the commonplace client-server
style security.
– Message level security is

redundant.
• But SOAP allows for other

messaging patterns:
– Multiple relaying brokers.
– Multiple recipients.

• Each hop represents a different
network connection.
– May want to authenticate peers

at each step.
– Nodes may partially process

messages.

Message
Creator

Message
Recipient

Message
Recipient

Message
Recipient

Node

Node

Node

Web Service Security Stack

Basic Terminology: Authentication

• Peer Authentication: corroboration that an entity is who it
claims to be.
– This applies to originators, relayers, and final recipients of

messages.
– You may think of these as software entities: web servers, client

programs, broker nodes, etc.
– In all cases, they may be required to prove their identity
– Think: Web servers with X.509 certificates, HTTP Authentication

• Data (Message) Authentication: corroboration that the
contents of the message come from the asserted source.
– Note that messages may be handled by many different entities.

This applies typically to the message originator.
– Think: digital signatures.

Basic Terminology: Integrity

• Data Integrity: transmitted messages have not
been changed, tampered with, etc. The recipient
receives the same message that was sent.
– Can be implemented in both the transport level (SSL)

and message level (XML-Signature).
– Transport level works point-to-point, or in a sequence

of point-to-point transmissions.
– Message level works independently of network

connections. Necessary for multi-stepped
transmissions.

– Think: message hashing

Basic Terminology: Data
Confidentiality

• Used to keep message transmissions private.
– Typically, this is just encryption/description as we normally think

of it.
• Can be implemented at both the transmission and message

level
– HTTPS and XML-Encryption

• SOAP provides additional confidentiality requirements.
– Different sections may be encrypted by different keys.
– Sections of XML may have layered protections
– EX: when transmitting credit card info, different processors may

have the right to see your name, your purchase, the cost, your card
number, etc.

Message Uniqueness

• A particular message instance should only
be transmitted once to the final recipient.
– Ex: avoid multiple charges for the same

purchase, or multiple submissions of the same
job to an “expensive” computing resource.

• SSL connections provide this.
• The message level scenario is somewhat

complicated.

Additional Security Concepts
• Authorization: does the authenticated entity have the right to access a

resource?
– Think: UNIX file permissions
– Related to policy.

• Delegation and Trust: can an authenticated entity give another entity
the right to act on its behalf?

• Federation: sharing security information and trust across security
domains and implementations.

• Although important, these are currently out of scope of conservative
WS-I security profile.
– Hard to get right
– Authorization and policy are very broad topics.
– Delegation and federation introduce security compromises.

Some Web Service Threats
DescriptionThreat

The MITM impersonates both the sender
and the recipient.

Man-in-the-Middle:

Death by a thousand cutsDenial of Service

Can involve both partial and complete
message replay.

Message Replay:

an entity pretends to be another entity,
sending or receiving unauthorized messages.

Impersonation:

An unauthorized entity “sees” the message
(perhaps processing it).

Message Snooping:

The message content is changed in some
way.

Message Alteration:

SOAP Message Security Preview

An initial look before XML Signature
and XML Encryption

SOAP Message Security 1.0

• The current OASIS standard supersedes
earlier WS-Security specifications.

• As (excessively) established in the previous
section, WS security can involve both
transport and message level security.
– Messages may be signed and encrypted.

• How do we do this at the message level?

SOAP Security and Headers

• SOAP headers are the extensibility point for
SOAP messages.

• This is where we put the security metadata
– Security tokens, message digests, signing algorithms,

etc.
• The following shows a sample SOAP message

(abbreviated)
• SOAP security builds on XML-Encryption and

XML-Digital Signatures, so we will detour
through these before looking at this in detail.

<?xml version="1.0" encoding="utf-8"?>
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."
xmlns:ds="...">
<S11:Header>
<wsse:Security xmlns:wsse="...">

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm= ""/>
<ds:SignatureMethod Algorithm=""/>

</ds:SignedInfo>
<ds:SignatureValue>DJbchm5gK...</ds:SignatureValue>
<ds:KeyInfo>

<wsse:SecurityTokenReference>
<wsse:Reference URI="#MyID"/>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>
</S11:Header>
<S11:Body wsu:Id="MsgBody“>…</S11:Body>
</S11:Envelope>

XML Signatures

Digitally signing XML messages

XML Signature Intro
• The XML Signature specification represents a general way of signing XML

content.
• Cryptographic “signing” involves the following steps:

– A one-way hash of the message is created.
– The hash is signed with a private key.
– The signed hash and the message are transmitted.

• The recipient verifies the signature by hashing the received message and
comparing this to the decrypted signature.

– Use the sender’s public key to decrypt.
– The two hashes should be bitwise identical.

• XML Signature tags provide both the signature and the tags necessary to
verify it.

– Envoloped/enveloping signatures that wrap child elements are not allowed by WS-
Security.

– Detached signatures apply to some other part of the document outside the tree, or
even a remote document.

XML Signature Schema Synopsis

<Signature ID?>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue/>
(<KeyInfo/>)?
(<Object ID?/>)*

</Signature>

KeyInfo

SignatureValue

ObjectID

Signature

Reference

Canonicalization

SignedInfo

What Is a One-Way Hash?
• A hash function takes a variable length input and produces

a fixed length output.
– One-way==unique mapping of input to output.

• For cryptographic hashes, this amounts to a permanent
mangling of the message.
– You can’t guess the input from the output.
– Similar input messages have extremely different hashes. A single

bit change in input completely changes the output.
– There is no decryption operation.

• Messages will always produce the same hash, so you can
verify that data has not been changed by reproducing the
hash.

• This is much faster than encryption/decryption.

A Signing Example
<Signature Id="MyFirstSignature" xmlns=http://www.w3.org/2000/09/xmldsig#>

<SignedInfo>
<CanonicalizationMethod Algorithm=“…"/>
<SignatureMethod Algorithm=“…"/>
<Reference URI=“…">

<Transforms>
<Transform Algorithm=“…"/>

</Transforms>
<DigestMethod Algorithm=“…"/>
<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
<KeyInfo>

<KeyValue>
<DSAKeyValue> </DSAKeyValue>

</KeyValue>
</KeyInfo>

</Signature>

Notes

• The Algorithm attributes have been
abbreviated
– They provide URIs that point to named

algorithms (i.e. SHA-1 message digesting).
• The next slide gives some examples

Some Algorithm URI Examples

•http://www.w3.org/2001/04/xmlenc#triple
des-cbc
•http://www.w3.org/2001/04/xmlenc#aes12
8-cbc

Encryption

• http://www.w3.org/2000/09/xmldsig#dsa-
sha1
• http://www.w3.org/2000/09/xmldsig#rsa-
sha1

Signature

http://www.w3.org/2000/09/xmldsig#sha1 Digest

http://www.w3.org/TR/2001/REC-xml-
c14n-20010315

Canonicalization

Includes the key that can be used to
validate the signature.

KeyInfo (optional)

The base64 encoded value of the
signature.

SignatureValue

URI list for all the operations
(XSLT, canonicalization, etc) that
have been applied before digesting.

Transforms (optional)

Contains the digest method and the
digest value. Can occur multiple
times. URI attribute points to the
digested resource.

Reference

Name of the method used to hash
and sign the content.

SignatureMethod

The name of the method used to
create canonical XML.

CanonicalizationMethod

PurposeTag Element

XML Canonicalization
• One-way hashes, and thus

digital signatures, depend on
exact, bit-for-bit matches of the
messages.

• This is difficult for XML
– ASCII endlines are different:

\m,\n
– Different XML documents can

be equivalent (see right)
– Duplicated namespaces are

allowed but cause canon.
problems.

• Must specify the
Canonicalization algorithm.

• <name>Bob</name>
• <name>

Bob
</name>

• <s11:Envelope
xmlns:xx=“[someurl]”
ymlns:yy=“[sameurl]”>
<xx:FName>..</xx:FName>
<yy:LName>..</yy:LName>

</s11:Envelope>

Software

• A list of XML digital signature software is
available here:
– http://www.w3.org/Signature/

XML Encryption

Encryption rules for XML messages

XML Encryption Schema Summary
<EncryptedData Id? Type? MimeType? Encoding?>

<EncryptionMethod/>?
<ds:KeyInfo>

<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds:*>?

</ds:KeyInfo>?
<CipherData>

<CipherValue>?
<CipherReference URI?>?

</CipherData>
<EncryptionProperties>?

</EncryptedData>

Key Concepts of Encrypted XML

• Encrypted XML is still XML
– The encrypted value (in base64 encoding) of the

original document is placed in another XML document.
• Encryption is granular

– You can encrypt portions of a document, and you can
successively

– EX: child and gchild elements become progressively
more sensitive, so apply encryptions to them in
succession.

• XML encryption is mechanism-independent.
– Specify the mechanism with a URI.

A Simple Example
• Before
<?xml version='1.0'?>
<PaymentInfo>
<Name>John Smith</Name>
<CreditCard Limit='5,000'

Currency='USD'>
<Number>…</Number>
<Issuer>…</Issuer>
<Expiration>…</Expiration>

</CreditCard>
</PaymentInfo>

• After
<?xml version='1.0'?>
<PaymentInfo>
<Name>John Smith</Name>
<EncryptedData

Type='http://www.w3.org/2001/04/
xmlenc#Element'
xmlns='http://www.w3.org/2001/0
4/xmlenc#'>

<CipherData>
<CipherValue>A23B45C56
</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>

What Happened?
• First, note that the encrypted XML is still XML.
• We replaced everything after “John Smith” with new tags:

– <EncryptedData> brackets the encrypted elements.
– <CipherData> holds <CipherValue>, which holds Base64 binary

data
• The encoding for the encrypted data.

– CipherData may also point to an external data source.
• Note we could actually have encrypted the elements

hierarchically.
– Expiration, issuer, and number could be encrypted separately from

the CreditCard element, using different keys.

Including Additional Information
• The simple example assumes the

recipient has all the necessary
information to decrypt the message
in some off-line fashion:

– The decryption key.
– Information about algorithms

• But you can of course include this
information in the message.

– Keys are added using techniques
discussed in digital signature
notes.

– The EncryptionMethod element
specifies the method used.

• EncryptionMethod’s URI argument
points to a standard name for the
chosen method.

<PaymentInfo>
<Name>John Smith</Name>
<EncryptedData>

<EncryptionMethod
Algorithm=“[Some URI]”>

<CipherData>
<CipherValue>A23B45C56
</CipherValue>

</CipherData>
</EncryptedData>

</PaymentInfo>

XML Encryption Software

• XML Encryption software is available from
here:
– http://www.w3.org/Encryption/2001/Overview.

html.

SOAP Message Security 1.0

Using signatures and encryption to
secure web service messages.

SOAP Message Security 1.0
Mechanisms

• SOAP Message Security 1.0 (or SMS 1.0 in these
notes) is designed to do the following:
– Ability to send security tokens as part of the message

• X509 certificates, kerberos tickets, etc.
• These may be needed by the service to perform some operation

using external security mechanisms.

– Message integrity
• Support multiple signature formats

– Message confidentially
• Support multiple encryption technologies

What Is Out of Scope?
• Establishing authentication tokens

– These may use other mechanisms (Kerberos, PKI).
– SMS 1.0 just transports tokens

• Deriving keys
– Secure Conversation Specification, not (yet) part of WS-I.

• Establishing security contexts
– Secure Conversation Specification, not (yet) part of WS-I.

• Establishing trust
– WS-Trust: ftp://www6.software.ibm.com/software/developer/library/ws-

trust.pdf
• Non-repudiation

– Because someone will always ask

Building Up an Example
• The example on the right

shows a pre-secured
SOAP message.

• Namespace assignments
have been removed to
save space.
– S11: namespace is the

SOAP 1.1 spec.
– X: namespace is some

external namespace.

• The empty header will be
filled in.

<?xml version=“1.0”
encoding=“utf-8”?>

<s11:Header></s11:Header>
<s11:Envelop …>

<s11:Body>
<x:execCmd>

rm –r *.*
</x:execCmd>

</s11:Body>
</s11:Envelop>

Add the Security Information
• We start by adding the tag

<Security> to the SOAP
header.

• <wsse:Security> is used to
sandwich the security
section of the SOAP
header.

• As usual, we can
optionally specify actor
and mustUnderstand
attributes
– Use role for S12.

<s11:Header>
<wsse:Security

xmlns:wsse=“…”
S11:actor=“”
S11:mustUnderstands=“”
>

</wsse:Security>
</s11:Header>

<Security> Schema Definition
• The full definition is given

on the right.
• As you can see, it allows

you to include ANY other
elements from any other
schema.

• This will allow us to
include (for example)
digital signature elements.

• Or anything else.

<xsd:complexType
name="SecurityHeaderType">

<xsd:sequence>
<xsd:any

processContents="lax"
minOccurs="0"
maxOccurs="unbounded">

</xsd:any>
</xsd:sequence>
<xsd:anyAttribute

namespace="##other"
processContents="lax" />

</xsd:complexType>
<xsd:element name="Security“

type="wsse:SecurityHeaderType">

Now Add in Signature Information
<s11:Header>

<wsse:Security xmlns:wsse=“…”>
<ds:Signature>

<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm=“”/>
<ds:SignatureMethod Algorithm=“”/>
<ds:Reference URI=“#MsgBody” >…
</ds:Reference>

<ds:SignedInfo>
<ds:SignatureValue>…</ds:SignatureValue>
<ds:KeyInfo> [To be expanded] </ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</s11:Header>
<s11:Body wsu:Id=“MsgBody” >…</s11:Body>

Notes
• We follow the same steps as in our earlier digital signature

examples, with a few twists:
• The <Reference>’s URI attribute points to the body of the

message.
• That is, we specify that the digested and signed part of the

XML document is the SOAP body using the standard
XML Signature technique.
– “Detached” signing
– Envelop signing is not allowed.

• <S11:Body> uses the Id attribute from the Web Services
Utility schema to name itself.

Security Tokens
• Clarify some SMS 1.0 terminology

– Claim: a declaration made by an entity.
• Identity, key, group membership, privilege, etc.

– Security Token: is a collection of claims

• Tokens may be signed or unsigned.

User Name Token Schema
• This token type includes 0

or more user name values.
• And it can include 0 or

more elements from any
thing else (xsd:any).

• And we can include
attributes, also from other
schemas.

• wsse:AttributeString just
defines an xsd:string
element that includes
wsu:Id and possibly other
(wildcard) attributes.

<xsd:complexType
name="UsernameTokenType">

<xsd:sequence>
<xsd:element

name="Username"
type="wsse:AttributedString" />

<xsd:any processContents="lax"
minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute ref="wsu:Id" />
<xsd:anyAttribute

namespace="##other"
processContents="lax" />

</xsd:complexType>

UsernameToken in Action
<s11:Header>

<wsse:Security>
<wsse:UsernameToken>

<wsse:Username>
marpierc
</wsse:Username>
<wsse:Username>
mpierce
</wsse:Username>

</wsse:UsernameToken>
</wsse:Security>

</s11:Header>

• We might include
this in a SOAP
header.

• Two user names
are included for
the same entity.

Binary Security Tokens
• The schema definition is shown on the

right.
• It really is just a string with attributes

for including a Base64 binary blob.
• The wsse:EncodedString is an

extension of wsse:AttributeString with
an “EncodingType” attribute.

• EncodingType is an xsd:anURI that
points to a named encoding.

– Usually this is Base64
• Tokens must also include a ValueType

attribute.
– URI pointing to a formal definition.

• This is primarily intended for including
X.509 and Kerberos tickets in the
SOAP message.

<xsd:complexType
name="BinarySecurityTokenType"
>

<xsd:simpleContent>
<xsd:extension

base="wsse:EncodedString">
<xsd:attribute

name="ValueType"
type="xsd:anyURI" />

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

Security Token References
• The previous slides assume that the

tokens are included in the message.
• These can of course be external and

pulled in from outside.
• Schema definition is to the right.
• Main body is a <choice> of <any>

schemas (for extensibility).
• Attributes are wsu:Id (seen before)

and wsse:Usage.
• The Usage attribute is a list of

URIs.
– Serve as formal names for usage

patterns.

<xsd:complexType
name="SecurityTokenReferenc
eType">

<xsd:choice minOccurs="0"
maxOccurs="unbounded">

<xsd:any
processContents="lax" />

</xsd:choice>
<xsd:attribute ref="wsu:Id" />
<xsd:attribute ref="wsse:Usage"

/>
<xsd:anyAttribute

namespace="##other"
processContents="lax" />

</xsd:complexType>

Token Reference Mechanisms
• <SecurityTokenReference> can include any elements from

any schema, but it is normally intended to include SMS 1.0
elements.

• SMS 1.0 provides the following elements:
– Reference: provides a URI (or fragment) to locate the external key.
– KeyIdentifier: Use this as a non-URI unique identifier. Typically a

hash of a unique name.
– KeyName: A human-readable version of the KeyIdentifier.
– EmbeddedReference: Use this to embed the token directly in the

Token Reference.
• For example, you can embed a SAML token here.

Digital Signatures and SOAP
Message Security

• SMS 1.0 uses XML-Signature to sign messages.
• SMS 1.0 puts a few restrictions on signatures

– Should not use Enveloped or Enveloping signature
transforms.

• Reason: headers may change in processing, breaking the
signature’s digest.

– Exclusive XML Canonicalization is recommended.
• This only copies namespaces explicitly used into the canonical

document.

Where Do I Sign?

• You may use SMS 1.0 procedures to sign
both the message content and any security
tokens.

• Signed messages have these additional rules
– Signing info must be prepended to any existing

<wsse:Security> information.
– All <ds:Reference> elements should point to

some resource in the same SOAP envelop.

A Full Example
• The following text shows a signed message,

including
– The signature (signed digest)
– The digest value
– The binary security token that can decrypt the signature
– Enough info (canonicalization, signing, and encryption

algorithms) to allow you to verify the message contents.

• We use the wsu:Id to point to the signed content.
• We don’t sign the security token in this example.

– It is a public key, so not secret.
– Everything will fail if it is tampered with.

<?xml version="1.0" encoding="utf-8"?>
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="...“ xmlns:ds="...">
<S11:Header>
<wsse:Security>

<wsse:BinarySecurityToken ValueType="...#X509v3" EncodingType="...#Base64Binary“
wsu:Id="X509Token"> MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...
</wsse:BinarySecurityToken>

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=“…"/> <ds:SignatureMethod Algorithm=“…"/>
<ds:Reference URI="#myBody">

<ds:Transforms><ds:Transform Algorithm= “…"/></ds:Transforms>
<ds:DigestMethod Algorithm= “…"/> <ds:DigestValue>EULddytSo1...</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>BL8jdfToEb1l/vXcMZNNjPOV... </ds:SignatureValue>

<ds:KeyInfo>
<wsse:SecurityTokenReference><wsse:Reference
URI="#X509Token"/></wsse:SecurityTokenReference>

</ds:KeyInfo>
</ds:Signature>

</wsse:Security>
</S11:Header>
<S11:Body wsu:Id="myBody"> … </S11:Body>
</S11:Envelope>

Encrypting Messages
• SOAP Message Security uses XML Encryption for message

confidentiality.
• Note that we may encrypt both the body and the header, or portions

thereof.
• The encrypted part replaces the original

– <EncryptedData> replaces the original section.
– We thus must create a manifest in the header, in <wsse:Security> for each

<EncryptedData> section.
– This information is put in the <ReferenceList> element.

• The SOAP header may also carry along encrypted keys necessary to
decrypt the message.

– Session keys encrypted with the recipient’s public key.
– Recipient decrypts with private key, then uses session key to decrypt the

message.
– This is more efficient: PKI decryption only applied to small session key,

which in turn decrypts the much larger message.

An Encryption Example
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."
xmlns:ds="..." xmlns:xenc="...">
<S11:Header>

<wsse:Security>
<xenc:ReferenceList>

<xenc:DataReference URI="#bodyID"/>
</xenc:ReferenceList>

</wsse:Security>
</S11:Header>
<S11:Body>

<xenc:EncryptedData Id="bodyID">
<ds:KeyInfo>

<ds:KeyName>…</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>...</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
</S11:Body>
</S11:Envelope>

Shibboleth and SAML Overview

Some approaches to federation and
authorization. Slides adopted from

presentation by Liang Fang.

What Is Shibboleth?
• Shibboleth is a authorization system designed to control

access to web material.
• It is designed specifically to meet US university system

requirements
– Student identity must be protected

• Students should be able to view digital material anonymously.
– Universities are federated in various ways (state, regional

associations, MSI collaborations) so Web resources must be
treated similarly.

• Thus Shibboleth has two major components
– Access controls based on attributes rather than identity.
– Federation.

How Does Shibboleth Work?
• A student is registered with

his/her local university.
– Attributes stored in LDAP,

for instance.
• Student requests a resource

from a modified HTTP Server.
• The server’s SHAR requests

attributes from the appropriate
Attribute Authority.
– AQM=Attribute Query
– ARM=Attribute Response

• SHAR accepts or denies the
request based on available
attributes.

Attribute
Authority

(AA)

HTTP
Server

SHAR

Browser

AQM

ARM

Federating Resources
• The previous picture assumes a single deployment

(one university or department, for example).
– It assumes the SHAR knows the correct AA to contact.

• To federate resources, we need additional services
to find appropriate AAs for a given user.

• Shibboleth defines the “Where Are You From?”
service (or WAYF) to do this.
– Actually, the WAYF interacts with registered Handle

Services, which are capable of associating the SHARS
with AAs.

• The WAYF is effectively the federating piece.

Shibboleth User Authentication

9. User Attributes

4. Username + password

Resource (Target)

SHIRE

SHAR

Handle Service

Attribute Authority

1.Request URL

User Authentication

User Attributes

(LDAP/SQL)

Resource(s)
(HTTP Server)

2. Request URL +
SHIRE URL

3. Request URL
+ SHIRE URL

5. Request URL + Handle + AA URL

6. Request URL +
Handle + AA URL

7. Request URL + Handle

8. Handle
returns
User ID

10. Request URL
+ User Attributes

11. User Attributes

LEA/RBC (Origin)

Bash Street

St Trinians

Hogwarts

LGfL

Oxford

…

WAYF

SAML and Shibboleth
• Shibboleth services are Web Services.

– Communicate with SAML assertions.
• Shibboleth based on SAML:

– SAML’s attribute statement and assertion format
– Query/response protocol for the AQM and ARM

messages
• The two are compatible but independent

technologies.
– Shibboleth focuses on the browser users, while SAML

deals with general scenarios including authorization
decisions

Conclusion

End of Web Service Security, except
for questions.

Accessing a Web Resource

• Client user accesses a free resource
• Client user is authenticated via a username and

password and accesses a protected resource

ServerW W WClient

Request

Response

Common Issues in Authentication

• High administrative burden
• Exposure of personal information
• Lack of traceability
• Password leakage
• Many passwords problem
• Resource accessibility is restricted
• Complicated to use

What is Shibboleth?

• Open source attribute-based single sign-on
software with an emphasis on user privacy,
built on the SAML 1.1 specification

• A provider and consumer of innovations in
federated identity standards

• An enabling technology for Internet2,
international, and regional efforts at
federation in education and research

Use Cases

• Traditional web single sign-on
• Shared electronic learning resources
• Research resources (grids)
• Outsourced academic or administrative

services
• Account linking across sites
• Delegated trust in portal scenarios

(e.g. meta-searching)

High Level Architecture
Resource

Knock, Knock

Resource
Who’s There?

Assertion
Consumer

Service

abcde12345Authn
Authority

Mary

Attribute
Requester

Attribute
Authority

abcde12345 who?

Attribute
Requester

Attribute
Authority

Mary, faculty,
contract:001

Resource
Let me in!

Shibboleth User Authentication

9. User Attributes

4. Username + password

Resource (Target)

SHIRE

SHAR

Handle Service

Attribute Authority

1.Request URL

User Authentication

User Attributes

(LDAP/SQL)

Resource(s)
(HTTP Server)

2. Request URL +
SHIRE URL

3. Request URL
+ SHIRE URL

5. Request URL + Handle + AA URL

6. Request URL +
Handle + AA URL

7. Request URL + Handle

8. Handle
returns
User ID

10. Request URL
+ User Attributes

11. User Attributes

LEA/RBC (Origin)

Bash Street

St Trinians

Hogwarts

LGfL

Oxford

…

WAYF

Privacy

• Keep my identity secret
• Don’t share any of my privacy info with

anyone else unless I authorize it.

Federations
• Shibboleth “federations” are sets of sites that

share common trust and operational metadata.
• Federations generalize bilateral arrangements

between sites so policy can be delegated and
scaled.

• Deployments can span federations and one-off
agreements, and the PKI accommodates this.

Federated Identity

• Users authenticate to their “home” or “origin”
institution (identity provider)

• Identity becomes one of many attributes potentially
sent to target sites (service providers)

• Authorization enforced by service provider,
identity/attribute provider, or both

• Partitions responsibility, policy, technology, and
trust

SAML 1.1 and Shibboleth

• Shibboleth based on SAML 1.x:
– SAML’s Attribute statement and assertion

format
– Query/response protocol for the AQM and

ARM messages
– Shibboleth focuses on the browser users, while

SAML deals with general scenarios including
authorization decisions

Pros and Cons
• Pros

– Low administrative
burden

– Exposure of personal
information under
user’s control

– Same identity for all
resources

– User traceability
– Resources can be

accessed from any
location

• Cons
– (Possible) multi-stage

authentication
– Risks by federation

Shibboleth Demonstration

Browser

Shibboleth Origin
Windows XP Pro
Apache Server 2.0.49

LDAP Directory
(Active Directory)
Windows 2003 Server

WAYF Service
Windows 2003 Server
IIS 6.0

Shibboleth Target
Windows 2003 Server
IIS 6.0

1

2

3
4

5

6

7

Project Deliverables

• An open source SAML implementation
(http://www.opensaml.org/)

• Java-based “origin” implementation
(authentication and attribute authorities)

• “Target” implementations for Apache, IIS, with
additional deployment vehicles in development,
including Java and non-web application scenarios

• Federated PKI-based trust fabric

