
Sakai Architecture and Roadmap

Charles Severance
www.sakaiproject.org

csev@umich.edu

KYOU / sakai

Boundary, Situation

It takes a village to
build a CLE….

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Photo blog: www.dr-chuck.com

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

sh

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Collaboration Happens

• As individuals, we are parts of many groups
and have many roles in those groups

Sakai
WLAP

OGCE

uPortal

Architecture

Tools

Board

Board

UM Sakai June MTG

Dec MTG Next Grant

Support

Support

Database

Next Ver

JSR-168 FusionGridNEESGrid

Data Model

Data Repo

Minnesota

Texas

Version 3Post Oct.

HENP

GESCRUM IssuesOne View of
Chuck’s

Context Map

Another
View

Another
View

Maintaining the Map

• Read E-Mail and move to proper folders
• Copy attachments into folders
• Searching for information
• Making calendar entries from E-Mail

Imagine Software
• That could create a new “context” in a few clicks

– Enroll/invite others to the context as necessary in a few more clicks
• Context capabilities

– E-Mail list (automatically extracts attachments and places them in folders which
appear on your desktop)

– Schedule (you can either see a “federated” schedule across all contexts or look at
one context)

– Persistent browser-based chat - quite useful during meetings when the Polycom or
VRVS messes up :)

– Resource area where anyone can upload files which appear on everyone’s desktop
at the same time (WebDAV)

– Threaded discussion area for the context
• Problem: There are literally hundreds of solutions to portions of this problem.

More Software

• A single place to see new activity in your “contexts”
• These contexts are stored on backed-up production servers rather than

your desktop for many years
• A search across your contexts - that would be really cool
• The ability to customize each context in terms of look, feel, and

capabilities
• The ability to build unique domain specific tools and interfaces to

extend the mechanism using Portlets, Servlets, or Applets

A 10-Year Collaborative Mission @ UM

19981991 - 1997 1999 2000 2001 2002 2003 2004 2005

SPARC

Science of Collaboratories

Sakai

Worktools (Notes Based) WTNG

Coursetools (Notes Based) CTNG

CHEF 1 CHEF 2

OGCE Grid Portal

NEESGrid

Portal Technology
Jetspeed 2.0
uPortal 3.0

Websphere É

Channels,
Teamlets

JSR-168
Portlets

CHEF
Services

JSR-168 Technology

OKI
Services

Legacy

Sakai
Teamlet

Other
Services

Sakai GUI

Sakai
Teamlet

Sakai GUI

Java
Swing

SPARC

2/2001 600 users 800 data sources

CourseTools

Over 42,000 users at the end of 2003

WorkTools

Over 9000 users (2000 active) at the end of 2003

Digital libraries &
documents

groups-to-
information

groups-to-
facilities

people-to-people

Communication,
Collaboration

Services

Distributed,
media-rich
information
technology

Remote
instruments

http://www.scienceofcollaboratories.org/

Science of Collaboratories

NSF Funded ITR

CHEF 1.0
• Fall 2001: CHEF Development begins

– Generalized extensible framework for building collaboratories
– “Best-of” CourseTools, SPARC, WorkTools

• Integrate across current UM projects and adopt relevant standards
• Funded internally at UM as replacement for CourseTools
• All JAVA - Open Source

– Jakarta Jetspeed Portal
– Jakarta Tomcat Servlet Container
– Jakarta Turbine Service Container

• Build community of developers through workshops and outreach

Not “just” a portal

• Portals are a framework to deploy tools (aka rectangles)
and focus on how the user wants to arrange their own
“rectangles”

• While CHEF technically is a portal, the goal is for the tools
to work together closely and seem to really be parts of a
larger “tool”

• CHEF has a lot of features, (services, presence,
notification, etc..) which bridge the gap between portal and
application framework

CHEF Applications

• CourseTools Next Generation
• WorkTools Next Generation
• NEESGrid
• NSF National Middleware Grid Portal

CourseTools Next Generation

Over 5000 users at the end of 2003
http://coursetools.ummu.umich.edu/

Worktools Next Generation

New WorkTools Sites being created in WTNG as of 12/2003
Run on the same servers as CTNG.

NEESGrid - The EquipmentNetwork for
Earthquake
Engineering
Simulation

NSF Funded.
NCSA, ANL, USC/ISI, UM, USC, Berkeley, MSU

CHEF-Based NEESGrid
Software

NMI / OGCE
Po

rta
l

Portlets
And

Teamlets

Jetspeed
Internal
Services

Service
API

Grid
ServicesGrid

Protocols

Local
Portal

Services

Grid
Service
Stubs

Remote
Content
Services

Remote
Content
ServersHTTP

Figure 4: The revised portal architecture will provide a unified interface for
portal services.

www.ogce.org

NSF National Middleware Iniative
Indiana, UTexas, ANL, UM, NCSA

What we learned in 10 years.
• Portal technology is a good idea - forces component approach -

functionality does not “smear”
• Portals are not just aggregators of independent information - but can be

an application framework
• Many (but not all) tools can be used for both teaching and learning and

research collaboration
• Separating functionality into lightweight GUI components and

pluggable services with strong and well-specified APIs allows
significant reusability

• GUI elements program to abstract service interfaces - not databases,
file systems, LDAP, etc. - this allows great flexibility.

While we were building
collaboratories…

• The Open Knowledge Initiative (OKI) at MIT was developing APIs
for learning management systems - involving many universities (UM,
Indiana, Stanford, and MIT were strong participants)

• Indiana, Stanford, MIT all developed learning management system
• Java Community Process (JCP) produced JSR-168 - The “unified”

portal standard API
• Oasis developed the Web Services for Remote Portals (WSRP)

standard
• The open-source uPortal portal project had quietly moved into the #1

open source portal (#4 including commercial vendors)

Jan 04 July 04 May 05

Michigan
•CHEF Framework
•CourseTools
•WorkTools

Indiana
•Navigo Assessment
•Eden Workflow
•Oncourse

MIT
•Stellar

Stanford
•CourseWork
•Assessment

OKI
•OSIDs

uPortal

SAKAI 1.0 Release
•Tool Portability Profile
•Framework
•Services-based Portal
•Refined OSIDs

& implementations

SAKAI Tools
•Complete CMS
•WorkTools
•Assessment

SAKAI 2.0 Release
•Tool Portability Profile
•Framework
•Services-based Portal

SAKAI Tools
•Complete CMS
•Assessment
•Workflow
•Research Tools
•Authoring Tools

Primary SAKAI Activity
Architecting for JSR-168 Portlets,

Refactoring “best of” features for tools
Conforming tools to Tool Portability Profile

Primary SAKAI Activity
Refining SAKAI Framework,

Tuning and conforming additional tools
Intensive community building/training

Activity: Ongoing implementation work at local institution…

Dec 05

Activity:
Maintenance &

Transition from a
project to

a community

So we got together and drew an über collaboration
picture…

Sakai Core Members
• Universities

– Indiana
– Michigan
– MIT
– Stanford

• Projects
– Open Knowledge Initiative (OKI)
– uPortal - JaSIG

• Funding ($6.8M - 2 Years)
– Mellon Foundation
– Hewlett Foundation
– Partners Program
– Core member match

KYOU / sakai

Boundary, Situation

What we agreed to build…

• A Collaborative Learning Environment
– Open Source
– Uses OKI (Open Knowledge APIs)
– Uses uPortal as its portal framework

• Similar to
– Blackboard
– WebCT

• And all four core institutions would deploy the
commonly developed software

Sakai 1.0
• Site based collaboration environment

– Worksite management
– E-Mail Lists
– Threaded Discussion
– Resources (folders) with WebDav support
– Chat
– No search yet :(
– Many other tools

• Beta Release July 15, 2004
• Production site available at ctools.umich.edu

More Sakai Beta Tools
Admin: Alias Editor (chef.aliases)
Admin: Archive Tool (chef.archive)
Admin: Memory / Cache Tool

(chef.memory)
Admin: On-Line (chef.presence)
Admin: Realms Editor (chef.realms)
Admin: Sites Editor (chef.sites)
Admin: User Editor (chef.users)
Announcements (chef.announcements)
Assignments (chef.assignment)
C. R. U. D. (sakai.crud)
Chat Room (chef.chat)
Discussion (chef.discussion)
Discussion (chef.threadeddiscussion)
Dissertation Checklist (chef.dissertation)
Dissertation Upload

(chef.dissertation.upload)
Drop Box (chef.dropbox)
Email Archive (chef.mailbox)

Help (chef.contactSupport)
Membership (chef.membership)
Message Of The Day (chef.motd)
My Profile Editor (chef.singleuser)
News (chef.news)
Preferences (chef.noti.prefs)
Recent Announcements

(chef.synoptic.announcement)
Recent Chat Messages (chef.synoptic.chat)
Recent Discussion Items

(chef.synoptic.discussion)
Resources (chef.resources)
Sample (sakai.module)
Schedule (chef.schedule)
Site Browser (chef.sitebrowser)
Site Info (chef.siteinfo)
Web Content (chef.iframe)
Worksite Setup (chef.sitesetup)
WebDAV

Sakai Going Forward
• Focus on the”Learning” of Collaborative Learning

Environment through 2Q05
– Getting ready for production deployment at the four partner sites
– Improving the look and feel of the software
– Many feature enhancements (to satisfy four + 60 schools)
– New GUI Programming Environment based on Java Server Faces
– Building new set of Sakai APIs (Java)

• Based on OKI - Enabling RDF

• Move into OGCE and NEESGrid starting 3Q04
• Release 2.0 - 2Q04

Sakai Architecture

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Portlet Design Patterns - Where does the information
come from / go to?

The Portal API

The medium-thin portlet
which depends on a locally
instance standardized API

for all persistence,
communication, etc.

Presentation

TCP/IP, JDBC, File-system, low-level
web services, grid-services etc…

Presentation

Portlets handle interaction
patterns, event handling,
and state management.

Strong layer with many APIs with a pluggable implementation capability for each API allowing
for significant reconfiguration and reorientation of the portal without modifying tools.

Portlets use many different
APIs (there is not a 1-to-1
crrespondence) between

portlet and API
components.

Presentation

The Sakai
Tool Portability
Profile
Framework

Sakai Tool

OKI 2.0
impls

Sakai API Implementations
OKI Plug-In

Sakai
A

PI

O
K

I
A

PI

Sakai
Data

Sakai
G

U
I

W
idgets
JSF

Rendering Environment

The Sakai API is based heavily
on the OKI API but focused on
the portability and
interoperability of Sakai tools.
The Sakai API should be
though of as value add on top
of the OKI APIs. The Sakai
APIs encode what OKI would
call “out-of-band” agreements
explicitly into method calls,
parameters and return values.

Sakai Application Programming
Interfaces (APIs)

• Make tool development easier
• Promote data and tool portability between

Sakai environments
• Hide some data management details
• Error handling
• Provide re-usable system and application

services to tool developers

Tool

Sakai API Impls

Sakai
A

PI

Sakai
Data

Simple
Deployment
In a simple deployment, the
Sakai system may just use the
Sakai provided API
implementations and point it at a
database connection, let Sakai
build the tables - and off we go.

Tool

Local
OKI Impl

Sakai API Impls
OKI Plug-In

Sakai
A

PI

O
K

I
A

PI

Sakai
Data

Basic
Local Customization
In the most common situation,
local sites will want to customize
a few things - perhaps AUTHN,
AUTHZ, a few DR’s. Sites will
write/procure/configure OKI
implementations which plug into
the Sakai implementations. The
Sakai implementations are
configured to “federate” between
data from the plug-in and the
Sakai data as desired by the site.

Tool

Sakai API Impls

Sakai
A

PI

PeopleSoft

Drastic
Local Customization
At some level, it would be
possible to completely re-
implement the entire Sakai API
for the particular component (i.e.
grading). Because the Sakai
APIs have no “out-of-band”
agreements, the tools cannot
perceive that the implementation
has been changes.

Concepts and Terminology

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Sakai Technology

• Hibernate for object persistence
• Sakai APIs that imitate OKI OSIDs
• Tools are based on APIs and servlets
• JavaServer Faces separate out the

presentation from tool logic
• uPortal integrates tools at the UI level

Specific TPP Elements

• GUI: Java Server Faces + Sakai Widgets
• Framework API

– Best practice: Setter-style dependency injection
• Both tools and services are components*

• Cross-webapp service framework
– Service locator also supported

• No (zip, zero, nada) framework imports
required

JSF Mini Tutorial
• Document-based layout which relates a view stored in a set of beans

using a set of widgets (button, input, drop-down) and a set of action
methods associated with buttons, etc.

• There are no URLs (munged or otherwise)
• Additional Sakai widgets within JSF in insure look and feel at a higher

level across tools

<sakai:tool_bar>
<sakai:tool_bar_item

action="#{AnnouncementTool.processActionListNew}"
value="#{msgs.annc_list_new}" />

<sakai:tool_bar_item
action="#{AnnouncementTool.processActionListDelete}"
value="#{msgs.annc_list_delete}" />

…

JSF is Used to Describe the UI
<sakai:view_container title="#{msgs.sample_title}">

<sakai:tool_bar> <sakai:tool_bar_item/> </sakai:tool_bar>

<sakai:instruction_message
value="#{msgs.sample_one_instructions}" />

<sakai:group_box
title="#{msgs.sample_one_groupbox}">

<h:inputText
value="#{MyTool.userName}" />

<sakai:date_input
value="#{MyTool.date}" />

<sakai:button_bar>
<sakai:button_bar_item
action="#{MyTool.processActionDoIt}
value="#{msgs.sample_one_cmd_go}" />

</sakai:button_bar>

Model View Controller Mini Tutorial
• Domain Model

– Long Term Persistence
• Controller

– Orchestra conductor
– Retrieves the Model (subset of Domain Model)
– Holds state in terms of the user interaction
– Decorates the Model with view specific information
– Selects Layout
– Hands layout and Decorated-Model to View
– Processes the returned Decorated-Model from View

• View
– Renders Decorated-Model to user using layout
– Handles user interaction (possibly with validation)
– Returned Modified-Decorated-Model to Controller

MVC Mini Tutorial

View

Controller

Domain
Model

Model

Model

Model

Model

• Domain Model
– Persistence

• View
– Renders decorated model

• Controller
– Orchestrates

• Model
– Data moved between elements

Inversion of Control Mini Tutorial

• Components code to interfaces, not implementations
• When a component needs an implementation for a particular interface,

how does it find the implementation
• Four basic approaches (formerly known as Level 0-3 IoC)

– Service Locator (Turbine, Avalon)
– Interface Injection (Avalon)
– Setter Injection (Spring)
– Constructor Injection (Pico)

http://www.martinfowler.com/articles/injection.html

Service Locator

• Component calls a service locator with the
desired interface as a parameter
– Can gather dependencies dynamically this is

useful if dependency lookup is expensive
– This does force an explicit dependency on the

framework
class MovieLister...

MovieFinder finder =
(MovieFinder) ServiceLocator.getService("MovieFinder");

Interface Injection

• The component declares that it “implements
serviceable” which triggers the framework
to poke in the implementations via well-
known methods (Avalon)
– Often this is used to inject a service locator and

then that service locator is used to garner other
dependencies

Setter Injection (Sakai preferred)

• The component simply provides bean-style setter
and getter methods for the dependent interfaces it
needs - framework constructs object then calls the
setter for anything that is already in the framework
(auto-wire)
– No explicit dependency on the framework at all
– Articulates well with all of the bean support in lots of

places
– Not able to declare which of the setters are required for

safe operation unless this is in a XML config file

Constructor Injection
• The component provides a number of constructors with the

dependencies as parameters - the framework picks one and
constructs the object will all of its needed dependencies.
– The object is never in a “partially ready to go” state
– Can express multiple acceptable dependency sets using different

construtors
– No explicit dependencies on the framework
– Cannot work unless the framework is doing the constructing (I.e.

no chance to “fake it” in Servlet of JSF managed objects)

IoC Summary

• Setter injection is the best practice for new
code
– No explicit dependencies
– Leverages bean support
– Can be “simulated” easily when framework is

not constructing objects
• We will always support Service Locator

Sakai Presentation

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

The Sakai User Interface Process

Sakai Tool

FacesServlet

Faces-config.xml

Sakai
GUI Elements

Faces
Renderer uPortal

JSF Page

Client

JSF Servlet Render Portlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

All the components…
On one slide :)

JSF Servlet Render JSR-168 Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Sakai framework wakes up,
reads a bunch-o-files and
initializes components

JSF Servlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Sakai then pokes config
data and auto-wires service
implementations into beans

JSF Servlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Action runs, accesses services
through config beans, sets view
beans, selects layout mode.

JSF Servlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

JSF Render takes layout, and
renders the the view pulling info
from the view beans…

JSF consults the
layout for the
particular view
beans to look at for
their data.

JSF Servlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Then we wait… It is quiet…
Too quiet.. And then the user
pushes a button.

JSF Servlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Oops.. The user entered invalid
data - JSF scolds them and
gives them another chance…

Merde!

Validity checking is
optional and bypassable
for on an action by action
basis.

JSF Servlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Le User enters valid information,
JSF sets the View Beans and
calls the requested action…

JSF consults the
layout for the
name of the action
method to call!

JSF Servlet Render Portlet Render

JSP Layout
<sakai:toolbar>

< …

Tool
View BeansConfig Beans

…

Fram
ew

ork/C
onfig

Action
Action

JSP Layout
<sakai:toolbar>

< …

Service

Config Beans

Method

Method

Service

Config Beans

Method

Method

Action runs, accesses services
through config beans, sets view
beans, selects layout (again)…

Sakai and uPortal / JSR-168

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

uPortal 3.0

Framework

uPortal 2.3

Pluto

uPortal Portlet Roadmap

• uPortal 2.3
– Support Portlets

(JSR-168) via
adapter

• uPortal 3.0
– Implement Portlet

Specification
(JSR-168)

– Support IChannel
via adapter

Portlet Portlet

Pluto

Portlet Portlet

Adapter

Chan Chan

Portlet

Framework

PortletChan Chan

Adapter

Chan Chan

Feb 19, 2004
SAKAI Developer’s Workshop, Stanford University

Portal => Application Framework

• Portals are a framework to deploy tools (aka rectangles) and focus on
how the user wants to arrange their own “rectangles”

• While Sakai has chosen to use a portal as a component integration
technically, the goal is for the tools to work together closely and seem
to really be parts of a larger “tool”

• Sakai has a lot of features, (services, presence, notification, etc..)
which bridge the gap between portal and application framework

Sakai 1.0 and uPortal
• The embedded version where the entire Sakai tool set

appears as a single channel much like the “SuperChannel”.
This can be installed in any standard uPortal environment.

• The “injected” version which uses a modified version of
uPortal 2.3 with two-level navigation and configuration
information coming from Sakai. This is pretty much a
stand-alone learning management system using uPortal.
The uPortal theme and structure will be altered to precisely
display the hierarchical navigation needed by Sakai.

Sakai 1.0: Embedded Version
(uPortal 2.3)

Home Athletics Sakai

CS101 EE499 EE499-Sec01 Chess Motor

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Fred: He will move P-
K4

Joe: Nah - he did that
last time

Mary: It does not
matter what he does -
I will beat him again

Watch me
now mary!

Send

Play
Help

FAQ
Meeting

Single
Channel

Admin

Sakai 1.0: Injected Version
(uPortal 2.3)

EE499 EE499-s01Home CS101 Chess

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Fred: He will move P-
K4

Joe: Nah - he did that
last time

Mary: It does not
matter what he does -
I will beat him again

Watch me
now mary!

Send

Play
Help

FAQ
Meeting
Admin

EE499 EE499-s01Home CS101 Chess

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Fred: He will move P-
K4

Joe: Nah - he did that
last time

Mary: It does not
matter what he does -
I will beat him again

Watch me
now mary!

Send

PlayHelp FAQ Meeting Admin

Sakai 2.0 and uPortal
• The integrated version where Sakai tools simply are part of

the set of channels which can be added to any uPortal
environment. By placing a Sakai tool anywhere within the
navigation hierarchy of uPortal, it becomes a collaborative
element at that location.

• This is more complex than it sounds and as such will only
work within uPortal and will require some modifications to
uPortal that the Sakai effort is undertaking and
contributing to the uPortal project.

The Hierarchy Challenge
Sakai

Help

EE499 Chess MotorCS101

Folders

FAQ Chat

Play

Game Chat

Chat FoldersSec01 Sec02

Chat Folders
Chat

Folders

Access
Control

List

Access
Control

List

Access
Control

List

Access
Control

List

Portlets/Channels need to know “where” they fit for inherited access control and
to know the “context” in which they operate - “I am the Chat for CS101”. There
are fragment administration issues. This is not specified in the JSR-168 spec.
SuperChannel and Sakai Embedded are solutions which hide the hierarchy
from the portal - but this is less than ideal because it would be nice to drop a
context-sensitive “chat” tool anywhere in the portal.

Sakai 2.0: Integrated

EventsMyPage Athletics Courses

+ CS101
+ EE499

+ Main
- Sec01

Help
Chat
FAQ
Meeting

+ Sec02
+ Chess
+ Motor

Fred: He will move P-K4

Joe: Nah - he did that last time

Mary: It does not matter what he does - I will beat him
again

Joe: What if he pulls his goalie?

Watch me now mary!
Send

EventsMyPage Athletics Courses

Fred: He will move P-K4

Joe: Nah - he did that last time

Mary: It does not matter what he does - I will beat him
again

Joe: What if he pulls his goalie?

Watch me now mary!
Send

EE499 -> Sec01 New Course New Section

Chat
Help

FAQ
Meeting
Admin

Advanced Sakai

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Sakai Framework Possibilities

• Web server / Browser
– This is what we are committed to do in 2 years

• Swing desktop
• Web Services - a few places
• Web Services - everywhere

Linux

JVM

Tomcat (many webapps)

Plan A - Clusters of JVM’s JSF
implementations from SUN.

JSF Servlet and JSF Portlet

Tool Action

JSP JSP JSP

Service

Tool Action

JSP JSP JSP
Tool Action

JSP JSP JSP

Service Service Service

Fram
ew

ork

Linux
JVM

Tomcat (many webapps)JSF Servlet and JSF Portlet

ToolAction
JSPJSPJSP

Service

ToolAction
JSPJSPJSP

ToolAction
JSPJSPJSP

Service Service Service

Fram
ew

ork

Linux
JVM

Tomcat (many webapps)JSF Servlet and JSF Portlet

ToolAction
JSPJSPJSP

Service

ToolAction
JSPJSPJSP

ToolAction
JSPJSPJSP

Service Service Service
Fram

ew
ork

Linux
JVM

Tomcat (many webapps)JSF Servlet and JSF Portlet

ToolAction
JSPJSPJSP

Service

ToolAction
JSPJSPJSP

ToolAction
JSPJSPJSP

Service Service Service

Fram
ew

ork…

Linux or Windows

JVM

What if SUN provided a SWING JSF Render capability
and we hand-build desktop versions of services or
hand-build stubs which used ROMI or Web Services?

JSF Swing

Tool Action

JSF JSF JSF

Service

Tool Action

JSF JSF JSF
Tool Action

JSF JSF JSF

Service Stub Stub

D
esktop

Fram
ew

ork

Registry

Linux

JVM

Service

Linux

JVM

Service

Web Services and
Cross Language
Proof of Concept

Linux

JVM

Tomcat
JSF Contianer

Tool Action

JSP JSP JSP

Session

Fram
ew

ork

W
S

 C
ontianer

Apache

PHP Script

Launch preserving
session/identity

// Motorola v300: 20-06-04_0827.jpg
//Treo 600 Variant 1: Picture006_19Jun04.jpg
//Treo 600 MMS: image000.jpg
// In the short term, we parse the string and see if it
// we fake the validmotorola

$parts = split("[-_]", $imagename);

echo "Part count:" . count($parts) . "\r\n";
print_r($parts);

if (count($parts) == 4 && strlen($parts[0]) == 2 &&
strlen($parts[2]) == 2 && strlen($parts[3]) >= 8) {

echo "Motorola v300 format file:" . $imagename . "\r\n";
$month = $parts[1];
$year = "20" . $parts[2];

} else {
$month = date("m");
$year = date("Y");
$imagename = date("d-m-y_Hi") .sprintf("%03d",$i) .";

}AUTHZ

•How do we launch non-JAVA elements passing in basic identity, session information? WSRP? Ad
hoc? cWebProxy? Do we include a back-reference handle to help resolve web services?
•How do we secure the web-services calls? What languages support
•Do we refactor services? Do we we implement that critical subset? Do we end up with new
methods that are “yucky” but well-suited for web-services?
•Do we hide things in PHP behind an API with methods? Or do we just lay down some web
services code in the PHP?

Linux

JVM
Tomcat (many webapps)

What if we built a
version of the
framework that
examined an interface
using reflection and
dynamically built a
proxy, generated
WSDL, and just made
web service happen
pretty much
transparently other
than declaring where
services were to run
in configuration…

Hopefully there will be
a mechanism for
secure web services,
or perhaps we could
simply use two-way
SSL certificate
exchange to force
transport security…

JSF Servlet and JSF Portlet

Tool Action

JSP JSP JSP

Stub

Tool Action

JSP JSP JSP

Stub

Fram
ew

ork w
ith

W
eb S

ervices

Linux
JVM

Axis

Service

A
xis

Fram
ew

ork …

Windows
.NET

Service

.N
E

T
Fram

ew
ork

Linux

JVM
Tomcat (many webapps)

What if the
frameworks were
highly coordinated
and in addition to
dynamically
generating stubs and
placing web services,
provided standardized
mechanism for
moving identity
securely across web
services, and the
frameworks could
perform dependency
injection automatically
when one service had
a dependency on a
service running on
another server…

Hmmm. Sounds like
the Grid.

JSF Servlet and JSF Portlet

Tool Action

JSP JSP JSP

DR Stub

Tool Action

JSP JSP JSP

AUTHZ
Service

S
akai G

rid
Fram

ew
ork

Linux
JVM

Axis

DR
Service

S
akai G

rid
Fram

ew
ork

AUTHZ Stub

Why wait for web services?
• Our APIs and services will not really be mature until early 2005 - we

may have to do major re-factoring as our code base grows and
problems are identified

• Secure, identity preserving web services at a distance seem to be
churning every 6 months.

• We are committed to deliver a full-featured high-performance product
in the Java / Web Server / Browser space in two years.

• We don’t have time to be the “tip-of-the-spear” on tracking every
single web-service technology twitch.

• Web services are great fun for “point solutions” but are painful as a
basis for a framework right now

Why start on web services?

• Short term: Sakai API implementations can use Web
Services hidden behind the API (collecting point solutions)

• Web services are changing right now
– WSRF - Web Services Resource Framework
– Generic Security Services Application Program Interface (GSS-

API) defined in RFC 2853 and JDK 1.4.2

• Service Injection means that it is “Possible” to build a
Sakai Web-Services Framework without changing services
code.

Summary

• This a journey - we are just at the beginning
• Thank you for your time
• Sakai is a well funded effort which will

product a portal framework which will
support both basic JSR-168 portlets and
Sakai-style portlets as well.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

