

Plugin Programmer’s Guide
UNICOREpro Client Version 1.0
23 July 2003
Revision 2

Ralf Ratering
Pallas GmbH
Hermuehlheimer Str. 10
D-50321 Bruehl, Germany
ralf.ratering@pallas.com

1 Overview
The plugin interface offers the possibility to add functionality to the standard UNICOREpro
Client without manipulating the basic software. This paper describes how different types of
plugins can be implemented and how existing Client components can be reused. You will find
the complete Client source code available for download at the download section of
http://www.unicorepro.com. The source code package also contains the Script, Command,
POV-Ray and Auto Update Plugins, that you may want to use as an example or template.
The paper is not meant as a general introduction into UNICORE. If you are not familiar with
UNICORE concept and terms please refer to other documentation available at the
UNICOREpro web sites.

2 General Client Concepts
The Client software contains several components that can be re-used for plugin programming.
These components include graphical interfaces (FileImportPanel, FileExportPanel,
RemoteTextEditor), container classes to create your own Abstract Job Objects
(ActionContainer), as well as classes to get the outcome of your Abstract Job Object
(OutcomeManager) and to access the available resources (ResourceManager). For those of
you who want to write their own customized Abstract Job Objects and want to submit them
directly from the plugin we have added a Requests section that describes how to use the
Observable mechanism for job submission.

2.1 Resource Manager
The com.pallas.unicore.resourcemanager.ResourceManager class is the central instance where
all resources like images, Usite and Vsite resources, file chooser dialogs and user information
are stored. There are several public static methods to access these resources and the most
important ones will be described here:

public static Client getCurrentInstance();
Get a reference to the current Client instance.
public static UserDefaults getUserDefaults();
Get a reference to the user defaults.
public static SystemDefaults getSystemDefaults();
Get the SystemDefaults instance, containing e.g. the default Usite URL.

mailto:ralf.ratering@pallas.com
http://www.unicorepro.com/

public static synchronized String getNextObjectIdentifier();
Get a unique identifier String e.g. for your AJO objects.
public static ConnectionManager getConnectionManager();
Get a reference to the Client’s ConnectionManager
public static SelectorDialog getSelectorDialog(File selectedFile,
Vsite vsite);
Get a file chooser that already exists for a VSite. This method is much faster than building a
new one, because the file chooser has already been built and will just be set to visible. If the
VSite parameter is null a local file chooser will be returned. The first parameter sets the
initially selected file.
public static SimpleDateFormat getDateFormatter();
Get a DateFormatter with format "MM/dd/yyyy". Use this method to get a format consistent
with the rest of the Client GUI.
public static SimpleDateFormat getTimeFormatter();
Get a DateFormatter with format "HH:mm:ss". Use this method to get a format consistent
with the rest of the Client GUI.
public static SimpleDateFormat getCompleteFormatter();
Get a DateFormatter with format "HH:mm:ss MM/dd/yyyy". Use this method to get a format
consistent with the rest of the Client GUI.
public static SimpleDateFormat getUTCFormatter();
Get a DateFormatter translating local time to UTC. Use this method to get a format consistent
with the rest of the Client GUI.
public static Vector getUsites();
Get a Vector containing the Usite objects that have been loaded from the Unicore Site URL.
public static Vector getVsites(Usite usite);
Get a Vector containing all Vsite objects that are sent from a given Usite by the listVsites
UPL request.
public static NamedResourceSet getResourceSet(Vsite vsite);
Get a set of available resource objects at a given Vsite.
public static Vsite getMatchingVsite(Vsite vsite);
Given a Vsite instance, find another Vsite instance in the resource cache that points to the
same real Vsite.
public static boolean isUsiteAvailable(Usite usite);
Test, if a given Usite is accessible from the Client.
public static boolean isVsiteAvailable(Vsite vsite);
Test, if a given Vsite is accessible from the Client.
public static boolean usiteExists(Usite usite);
Test, if a Usite exists in the resource cache.
public static boolean vsiteExists(Vsite vsite);
Test, if a Vsite exists in the resource cache.
public static boolean isSpecialVsite(Vsite vsite);
Test, if a given Vsite supports some special features like resource brokerage or connection to
Globus sites.
public static ResourceCache getResourceCache();
Get a reference to the resource cache, if you want to manipulate it directly.
public static String getServicePrefix();
When sending an internal service job to a Vsite use this prefix to make sure the job will not
appear in the Client’s Job Monitor.
public static User getUser(Vsite vsite);
Get the User object containing the certificate to be used for a given Vsite.

 2

2.2 Using ActionContainers to encapsulate AJOs
UNICORE is based on the creation of Abstract Job Objects (AJO) that are sent between
Client and server. These AJOs consist of ActionGroups that contain directed acyclic graphs of
AbstractActions at a very low level. To handle those rather complex job structures the Client
uses different ActionContainers that encapsulate ActionGroups that serve different purposes,
like file operations, command execution or internal services.

AbstractJob

ActionGroup

IncarnateFiles

MakePortfolio

ExceuteScriptTask

DeletePortfolio

ActionGroup

ImportTask

RenameFile

DeclarePortfolio

ImportTask

RenameFile

ActionGroup

MakePortfolio

ExportTask

RenameFile

MakePortfolio

SpoolTask

Figure 1: Script Container encapsulating a complex AJO

Although the container classes hide away as much of the AJO programming from the plugin
developer as possible, it is still necessary to understand some of the basic AJO concepts to
implement complex task plugins. Please refer to the AJO source code and documentation, if
you want to create your own customized abstract job objects that are not covered by the
container hierarchy.
Most probably, your plugin container will fit into the container hierarchy as a sub class of
UserContainer, because these containers execute applications that are accessible via
application resources. However, if you are planning to build more complex plugins tasks that
consist of sub jobs running at different sites or contain complex control structures, you should
consider to make your container a sub class of GroupContainer:

 3

Figure 2: UNICORE Client container hierarchy in package com.pallas.unicore.container

2.3 Accessing Remote File Systems
Within the UNICOREpro Client you have the possibility to access and manipulate remote file
systems using the packages com.pallas.unicore.Client.remotefilechooser and
com.pallas.unicore.Client.explorer.

RemoteFile
The NJS and TSI at the server side work on org.unicore.ajo.Xfile objects that are wrapped
into a sub class of java.io.File called com.pallas.unicore.Client.remotefilechooser.RemoteFile
in the Client. A RemoteFile object will be returned from the SelectorDialog or can be
generated from scratch. Every RemoteFile is defined by a Storage resource and a path in that
Storage space, e.g. Storage “Home” and path “doc/unicore” may be resolved to
“/home/username/doc/unicore” at a certain site. But the RemoteFile object will not know
about the complete resolved path until the Client has once contacted the Vsite and sent a
GetListing request. This is the case, when the RemoteFile object was generated by the
Selector Dialog, or when the updatePath() method of RemoteFile was executed.

SelectorDialog
The class com.pallas.unicore.Client.explorer.SelectorDialog contains methods that are similar
to those of the standard Swing JFileChooser and should be self-explaining. However, there is
one important detail about the way the Client handles SelectorDialog objects: The
ResourceManager keeps track of all Selector Dialogs that have been built in a session and
stores them in a hashtable. So, when using a SelectorDialog in your plugin you should ask the

 4

ResourceManager for an instance, instead of creating your own one. Use the method
ResourceManager.getSelectorDialog(File selectedFile, Vsite vsite) for that.
If you insist on creating your own dialog make sure you to set the pre-emptive mode in the
constructor to ResourceManager.getUserDefaults().getPreemptiveFileChooserMode(). This
pre-emptive mode will get listings for nodes one level in advance in the file system hierarchy.
This is far more convenient for the user, but can lead to performance problems on very large
or slow file systems, so the user can choose whether to use this feature or not in the User
Defaults.

RemoteTextEditor
The RemoteTextEditor in package com.pallas.unicore.Client.editor allows to load, edit and
save files from remote file spaces. It also supports undo and redo as well as cut, copy and
paste inside the Client and from other applications. It is a subclass of its local equivalent
com.pallas.unicore.Client.editor.TextEditor. Both may be used “out of the box” by adding
them to you own Component:

public class PluginJPAPanel extends JPAPanel {
private PluginContainer container;
private RemoteTextEditor textEditor;

private buildComponents() {
textEditor = new RemoteTextEditor();
JScrollPane editorScrollPane =

new JScrollPane(textEditor);
}

public void applyValues() {
container.setText(textEditor.getText());

}

public void updateValues(boolean vsiteChanged) {
if(vsiteChanged) {

textEditor.setVsite(container.getVsite());
}

}
}

Theses are the most important methods to access the RemoteTextEditor:

public void setVsite(Vsite vsite);
public Vsite getVsite();
Set/Get Vsite to connect to
public void setText(String text);
public String getText();
Set/Get text from editor text area
public String getUnixStyleText();
Get text from text area, but remove any Windows style EOL and EOF characters
public void setFile(File file);
public File getFile();
Set/Get the file that is used to store the editor contents. Please note, that getFile() returns the
File object that represents the currently loaded file. This will be an instance of
com.pallas.unicore.Client.remotefilechooser.RemoteFile, in case we loaded a file from a
remote file system. You may want to store this File object in your plugin container to
remember the file source when reloading the task. Please, take a look at the ScriptContainer
for an example.

 5

2.4 Managing the Outcome
The com.pallas.unicore.resourcemanager.OutcomeManager keeps track of the outcome of
jobs during a session. When a task is executed in an iteration it will produce one
org.unicore.outcomes.Outcome in each iteration. The OutcomeManager collects all outcome
data belonging to one iteration of an AbstractAction and wraps it into an OutcomeEntry.
Additionally all filenames of files that are streamed from the NJS to temporary session
directory at the local file system are stored in the OutcomeManager. If your plugin contained
custom file exports to the local file system, that are not handled by the client, for instance if
used in an additional outcome panel, you should search in the streamed files of the
OutcomeManager to get the file.

OutcomeManager
The OutcomeManager contains only static methods to find the outcome information about
given AbstractActions or ActionContainers. All methods return Vectors containing one
element for each iteration. In case of nested iterations you will get a Vector containing other
Vectors.

public static Vector getOutcomeEntries();
Return a Vector containing all OutcomeEntries belonging to an AbstractAction
public static Vector getOutcomes();
Return a Vector containing all OutcomeEntries belonging to an ActionContainer
public static Vector getDetails();
Return a Vector containing all DetailEntries belonging to an ActionContainer
public static Vector getStreamedFiles();
Return a Vector containing the filenames of all files that have been streamed into the Client’s
session directory

OutcomeEntry
In an OutcomeEntry all outcome information for one iteration of an AbstractAction is
collected. For AbstractTask objects standard out and standard error are streamed as files with
the outcome from the NJS and stored in a session directory at the Client. The files belonging
to the AbstractTask are stored in the OutcomeEntry, as well as the Outcome object itself, a
time stamp containing the last status change, the NJS log and the iteration number:

public AbstractAction getAction();
Get the AbstractAction belonging to this entry
public Outcome getOutcome();
Get the org.unicore.outcome.Outcome object belonging to the AbstractAction
public String getLog();
Get the NJS log belonging to the AbstractAction
public File getStdoutFile();
Get the File containing standard out in case we have an AbstractTask
public File getStderrFile();
Get the File containing standard error in case we have an AbstractTask
public String getIteration();
Get the iteration number for this entry
public Date getTimeStamp();
Get the time stamp for the last status change of the AbstractAction

 6

2.5 Requests
In some cases it might not be appropriate for your plugin to use the container hierarchy for job
construction, because you need some very specialized functionality that requires direct AJO
programming. If so, you should first check if the com.pallas.unicore.requests package does
already contain a package that fits your needs and if not write your own request as a sub class
of ObservableRequestThread.

Observers and Observables
In the UNICOREpro Client AJOs are submitted as separate threads. Every thread can have
one or more observers attached to it that will be notified when the request has returned or any
other event occurred. To do so requests are sub classes of ObservableRequestThread which
implements the IObserver interface and contains AJO submission functionality. If your plugin
wants to get notified about request events, it has to implement the IObserver interface.

Useful Requests
Amongst others there are several requests that you might find useful for your plugin:

GetFilesFromUspace
Get a list of files from another job’s Uspace. This request is helpful if you want to get
intermediate results from a running job, for instance to visualize them in an additional
outcome panel.
SendFilesToUspace
Send a list of files to another job’s Uspace. With this request you can send steering files from
your local workstation into the working directory of a running job.
GetUsites
Get an updated list of currently available Usites
GetVsites
Get an updated list of currently available Vsites at a certain Usite
GetResources
Get the updated set of currently available resources at a certain Vsite
GetJobStatus
Get the current status of an AbstractJob
GetListing
Get the listing of a directory at a remote file system

Write your own request
There are a few points to follow if you want to submit a customized AJO in your own request:

1. Make your request a sub class of ObservableRequestThread
2. Implement the run() method
3. In run() construct your AbstractJob object and submit it using the inherited

nonPolling() method. CAUTION: nonPolling tries to execute the request without
polling, but if a time out occurs it will automatically switch into polling mode.

4. Check the returned Reply object of nonPolling() and extract the deserialized Outcome
from it in case it is a RetrieveOutcomeReply. Refer to the GetFilesFromUspace source
code for an example.

5. Notify all observers when the request has finished.
6. When using the request execute it with start() and make sure you have an Observer

attached to it.

 7

3 Plugins

3.1 Plugin Concept

Loading Plugins
Plugins are separate modules that are loaded into the main software at runtime. These
modules come as signed Jar archives that have the ending “Plugin.jar”. The Client scans two
directories for files that match this ending:
1. The installation directory ($INSTALLPATH/lib): In this directory all plugins that are part

of the distribution (currently script, command and autoUpdate) are stored. It is also
possible for the system administrator to place plugins here that should be available system
wide.

2. The user defined directory: This directory is definable via the user defaults dialog in the
Client and contains plugins that are only available to a single user.

When the Client finds a “*Plugin.jar” in one of these directories, it will check if the plugin
signature matches a trusted entry in the Client keystore. If so, it scans the archive contents for
a class file ending with “Plugin.class”. This class is assumed to be the main plugin class and
will be registered by the Client’s plugin manager.
As a package name for your plugin you may choose any name you want except for those
starting with “com.pallas.unicore”, because for security reasons plugin classes are not allowed
to reside in this name space.

How to Build a Plugin Jar Archive
1. Write and compile your plugin classes in a package called, lets say

“com.yourinstitution.unicore.Client.plugins.yourplugin”
2. Go to the parent directory of your package path and build the Jar-archive with “jar cvf

yourPlugin.jar com/yourinstitution/unicore/Client/plugins/yourplugin”
3. Sign the archive with your User Certificate (or any other certificate that you think is

appropriate). If you do not know where to find your certificate, simply use the one from
the Client keystore ($HOME/.unicorepro/keystore): “jarsigner -keystore keystore -
storetype JCEKS yourPlugin.jar aliasOfYourCertificate”

4. Put the signed plugin archive into the Client’s plugin search path (see above).

GUI Design Issues
If you are planning to extend the Client GUI in some way, we recommend to follow the Java
Look and Feel Design Guidelines available at
http://java.sun.com/products/jlf/ed1/dg/index.htm.

Plugin Types
We distinguish two different types of plugins, Task Plugins that add new types of tasks to the
standard Client tasks (e.g. CPMD or Fluent) and Extension Plugins that add any other new
functionality to the Client (e.g. Interactive Access or Resource Broker). Please note, that the
standard Client distribution contains two task plugins (Script, Command) and one extension
plugin (Auto Update), so these should be a good reference on how to implement the different
types. Both types have in common that they have to implement the main plugin class.

3.2 The Main Plugin Class
The main plugin class is responsible for loading, starting and finalizing the plugin. The
abstract base class is com.pallas.Client.util.UnicorePlugable and you should extend one of its
two sub classes TaskPlugable or ExtensionPlugable.

 8

http://java.sun.com/products/jlf/ed1/dg/index.htm

Figure 3:UML Diagram for main plugin classes in package com.pallas.unicore.Client.util

Abstract Methods
The following abstract methods have to be implemented by every plugin:

public abstract void startPlugin();
This method will be called after the plugin has been loaded. Perform all initialisation like
building or reading defaults here.
public abstract void stopPlugin();
This method will be called before the Client exists. Here any kind of finalization like
stopping threads or removing listeners can be performed
public abstract String getPluginInfo();
Return an info string about the plugin, containing some information about version, author,
copyright, etc. This string will be displayed in the Client's about dialog.

.

Public and Protected Methods
The following public or protected methods may be overwritten or used by your plugin:

public JMenuItem getSettingsItem();
Return a menu item that will be added to the Client's settings menu. Typically these items are
used to popup a plugin specific configuration dialog. The Client does not attach a listener to this
item so it is up to the plugin developer to respond to this item. The method returns null by
default, meaning that no menu item will be added to the Clients settings menu.
public HelpSet getHelpSet();
Return a help set that will be plugged into the Client's Java help. The method returns null by
default meaning that no help set is available. Please refer to the JavaHelp documentation on how
to create your own help set [JavaHelp].

 9

protected Client getClient();
This method can be used by a plugin to get a reference to the current Client instance.

4 Task Plugins
Task Plugins extend the standard UNICOREpro Client by adding new types of tasks to a job
via the Job Preparation menu. Every Task Plugin should implement 3 classes: a main plugin
class that is a sub class of TaskPlugable, a sub class of JPAPanel and a sub class of
UserContainer.

Add task
item

Settings
item

Icon

Plugin
info

Gui Components added by a task plugin

Figure 4: GUI components added by a task plugin

4.1 TaskPlugable
The TaskPlugable class will provide methods that integrate the UserContainer into the Client
jobs and the JPAPanel (the graphical representation of the container) into the Client GUI.

Abstract Methods
public abstract String getName();
Get name for plugin task that will be presented to the user in the GUI, e.g. in the job
preparation menu.
public abstract ActionContainer getContainerInstance(GroupContainer
parentContainer);
Build a new instance of the plugin specific ActionContainer. As argument the
GroupContainer that is parent of the plugin task will be passed. When implementing this
method we recommend to initialise the container name using the following code snippet:

YourContainer container = new YourContainer(parentContainer);
container.setName("New_" + getName() + counter);
container.setIcon(new ImageIcon(getIconImage()));
// count instance
counter++;

Your plugin task instances will then be counted using the protected integer field counter

 10

inherited from class TaskPlugin. Do not use your own counter variable, because the method
getContainerInstance will also be used to determine the container class without adding a new
plugin task to a job.

Public and Protected Methods
The following public and protected methods may be used or overwritten in your task plugin:

protected String getIconPath();
Every task plugin has to provide one single icon that represents the task in the job
preparation and job monitor trees as well as in the dependency graph. The TaskPlugable
class provides methods to load an Image from file and pass it to the Client GUI. We
recommend to include an icon into your plugin jar archive and return the path to the icon by
overwriting this method.
(e.g. return "com/yourinstitution/unicore/Client/plugins/yourplugin/yourIcon.gif").
The icon should have size 20x21 pixel with a bar of 5 pixel at the bottom and an image that
represents your plugin application above. It should be stored in gif format.

Figure 5: Format for container icon

The Client will automatically fill the bar at the bottom of the image with the correct color
corresponding to the current task status.
public Image getIconImage();
This method has been used to access the icon image in earlier versions but has been
deprecated. Use getIconPath() instead.
public final Class getContainerClass();
Final method returning the class of your plugin container. For internal use only.
public final boolean hasContainerClass(Class cls);
Final method returning true, if your plugin will provide a container of a certain class. For
internal use only.

4.2 Implementing a JPAPanel
The JPAPanel is the graphical representation of the plugin container in the user interface.
Here all plugin parameters, file imports and exports are set by the user. Whenever the plugin
container node in the job preparation tree will be selected the JPAPanel becomes visible. To
implement your own JPAPanel you have to extend a sub class of JPanel
com.pallas.unicore.Client.panels.JPAPanel. This class contains three abstract methods that
have to be implemented.

Abstract Methods
public abstract void resetValues();
Fill the controls in the JPAPanel with the entries from the underlying container. This
method will be called, whenever a new JPAPanel was built, e.g. when loading a job or

 11

when copying and pasting.

public abstract void applyValues();
Apply the current entries in the GUI to the underlying container. This method will be
executed before checking the job for correctness. The job will be checked for correctness
before it will be submitted, when clicking on the check button or simply when clicking onto
the job in the job preparation tree. You may also want to call this method in your plugin to
make sure the underlying container is up to date at a certain point of the execution.
public abstract void updateValues(boolean vsiteChanged);
This method that will be called whenever your plugin task has been selected in the job
preparation tree and your JPAPanel becomes visible in the GUI. If the parameter
vsiteChanged is true, the Vsite has changed since last the last update, so you may for
instance want to refresh some resources that are displayed in your JPAPanel.

Adding import, export and option panels to your JPAPanel
Import and export panels are the graphical interfaces to define imports and exports of files
within the UNICOREpro Client, while the option panel allows the user to set execution
parameters. You can integrate these panels simply by adding instances of
com.pallas.unicore.Client.panels.ImportPanel, ExportPanel and OptionPanel to your
JPAPanel. Make sure that you pass the applyValues, resetValues and updateValues events to
the panels by calling the corresponding methods in the panels. Refer to the Script Plugin for
an example.

4.3 Implementing a Plugin Container
You should make your plugin container a sub class of UserContainer, because these
containers can execute binaries as well as Application Resources that are defined in the
Incarnation Database of the Vsite. The UserContainer also handles imports and exports by
itself, if you have integrated the import and export panels into your JPAPanel.

Imports and exports and execution
Imports and exports are completely handled by the super class of UserContainer
TaskContainer. In a TaskContainer an AJO ActionGroup is constructed that consists of an
import, an execution and an export ActionGroup. This reflects what most plugin tasks will

look like: They import some files from the local or remote workstation into the USpace,

 12

execute an application and transfer the result files back to the workstation. So for this simple
case, all you have to care about in your plugin container is the construction of the execution
ActionGroup. The following code snippet shows how to execute an ApplicationResource that
is defined at the Vsite using a org.unicore.ajo.UserTask:

public class YourPluginContainer extends UserContainer {
…
/**
* This is a simple example for an execution group that
* executes a software resource using a UserTask.
**/

protected void buildExecuteGroup() {
…
// CAUTION !!!
// The container's resource set is just a reference
// to a resource set object that may be used by other
// tasks!!
// So ****CLONE**** the resource set before you add
// your software resource!!
ResourceSet taskResourceSet = getResourceSet().getResourceSetClone();

// CAUTION: Do not forget to set the software resource using
// setPreinstalledSoftware(Resource softwareResource) before.
taskResourceSet.add(getPreinstalledSoftware());

UserTask userTask =
new UserTask(getName(),

null,
taskResourceSet, // ResourceSet contains ApplicationResource
env,
getCommandLine(),
null,
getRedirectStdout(),
getRedirectStderr(),
isVerboseOn(),
isVersionOn(),
null, // this should be a Portfolio containing an executable

// if no ApplicationResource will be executed
getMeasureTime(),
getDebug(),
getProfile());

executeGroup =
new ActionGroup(“PluginExecutionGroup”);

executeGroup.add(userTask);
}

}

There are two important points about this snippet:
1. The Client attaches a com.pallas.extensions.NamedResourceSet to each

TaskContainer that can be accessed by the method getResourceSet(). Make sure to
clone the resource set, before you add your software resource to it. This has been one
of the major changes in Client version 3.6: One ResourceSet may be referenced by
multiple different tasks. So remember, that before manipulating the ResourceSet that
is attached to your task you have to clone it, because other tasks are affected to any
changes to the original ResourceSet.

2. Add your Application Resource to the ResourceSet that will be passed to the
UserTask. Please refer to the AJO documentation for more details about the UserTask
or take a look at the buildExecuteGroup() method in UserContainer.

Checking for errors in the container
Every ActionContainer has a com.pallas.unicore.container.errorspec.ErrorSet that contains
information about wrong or missing parameters. This ErrorSet is generated by calls to the

 13

checkContents() routine. In your own checkContents() method you should call the method
from the super class and only check the parameters that are specific to your plugin container:

public ErrorSet checkContents() {
// collect errors from super classes
ErrorSet err = super.checkContents();

// do your own checking here…
if(… one of your parameters is wrong …) {

// add a new Urror to the ErrorSet with the Container identifier
// and an error message as parameters
err.add(new UError(getIdentifier(), “Hey, my parameter is wrong!”));

}
// update the error set field
setErrors(err);
// return the error set
return err;

}

The error message given as a constructor parameter to UError will be displayed in the Client
when the Check button is pressed in the job preparation tree or when the user tries to submit
an incorrect job.

Using Application Resources
Keeping a job seamless means the job must not contain site-specific information to ensure it
can be executed at any site without modifications. The challenge for seamless application
support was to handle different installations and versions of the same software at different
sites. The solution to this problem was to use application resources
(org.unciore.resources.ApplicationResource) that are defined in the Incarnation Database
(IDB) and are part of the resource set that is sent from the server to the Client. Application
resources tell the Client which applications are supported at that site. If the application
required by the plugin is not within this resource set the user will be prompted that the
application is not available at that site.
If a matching site was found, its application resource will be attached to the job that is then
submitted to the site. The Target System Interface (TSI) will then know that the job requires a
special application and will look in its database on how to incarnate the plugin task. Please
note, that an application resource is identified by its name and version, so it can be sent to
different sites without modifications.

 14

Client NJS

IDBPlugin

APPLICATION Boltzmann 1.0

Description „Boltzmann Simulation“

INVOCATION [

/usr/local/boltzmann/bin/linuxExec.bin

]

END

Memory (64, 128, 32000)
...
APPLICATION Boltzmann 1.0
APPLICATION CPMD 3.1
...
Context MPI
...

Resource Set

Boltzmann
resource

available?

Add to AJO
UserTask

Display
message

Figure 6: Using application resources in a Plugin User Task

Please, refer to the Incarnation Database documentation to see in detail how application
resources are defined in the IDB. This is an example incarnation for the CPMD application:

SOFTWARE_RESOURCE APPLICATION CPMD 3.1.4
INVOCATION CPMD-3.1.4 [

export PP_LIBRARY_PATH=/usr/local/cpmd/lib/PP_LIBRARY;
/bin/mpprun -n $UC_NODES
/usr/local/cpmd/bin/cpmd3.4.1.x $CPMD_FILE $PP_LIBRARY;

]

A UserContainer contains a field softwareResource that should contain the resource that
corresponds to the plugin’s application. The field can be accessed via the methods
set/getPreinstalledSoftware().
Please note, that plugins need to identify their application resources by the names given in the
IDB. As a plugin writer you should specify the application resource name, so that all system
administrators that want to support the plugin know, which name they should give the
application resource.

Adding additional imports or exports to the plugin task
The easiest way to add your own imports and exports to a plugin task is to overwrite the
method buildActionGroup() in the container class:

public void buildActionGroup() {
FileExport export =

new FileExport(this, FileStorage.NSPACE_STRING, "testfile",
"c:/tmp/testfile", true, true);

addFileExport(export);
super.buildActionGroup();

}

 15

Do not use the setExport() method here, because this one will overwrite
all additional exports that have been set by the user. Also note, that the additional exports will
not appear in the export panel. If you want the exports to appear in the panel you should write
a method in the plugin's JPAPanel class, but take care that the same export is not added
multiple times:

private void buildAdditionalExports() {
FileExport export =

new FileExport(container, FileStorage.NSPACE_STRING, "testfile",
"c:/tmp/testfile", true, true)

container.addFileExport(export);
exportPanel.resetValues();

}

Storing plugin tasks
When the Client writes a job to file the user can choose between binary and XML format.
Both mechanisms do essentially the same, except that XML files are human readable and
editable. As a plugin writer you should be aware that the plugin container instance will be
written to file as a part of the job. An important issue is compatibility between versions here,
because if you add or change fields in your container a new version may become incompatible
to an older one.
Caution: Do not change the type of fields in your container classes, because this will lead to
incompatibilities between versions. There are ways to recover old versions in both storing
mechanisms, but whenever possible just do not change field types.

• Using binary format
When the Client stores jobs in binary format it uses the standard Java serialization. All fields
of the plugin container that should not be stored to file must be marked as transient. This is an
important issue, because you may have declared GUI elements as fields in your container, that
you do not want to write to file. All non-transient fields have to implement the Serializable
interface.
Caution: Make sure to add a long field serialVersionUID to your container. The Java
serialization uses these values to identify classes, even if their fields have changed. You can
generate these identifiers with the SDK-tool “serialver”:

C:\src>serialver –classpath <yourUnicoreClasspath>
com.yourinstitution.unicore.Client.plugins.YourPluginContainer.class

When you had to make significant changes to your container class, so that the versions have
become incompatible you can overwrite the methods readObject() and writeObject() in the
container class. Please, refer to the Java SDK Documentation about further details.

• Using XML
Since version 3.6 the Client will read and write jobs in XML format. The mechanism used
here is quite similar to the standard Java serialization. For plugin developers there are some
rules to follow:

1. By default the information stored in XML is exactly the same as it is in the standard
serialization. That is, no static or transient fields are stored. This should be ok for most
plugins.

2. If you do not want this, define a two-dimensional String array persistentXMLFields.
This array should contain all fields you want to be stored in the XML file.

When your container versions have become incompatible, it is possible to convert old
versions using the XSLT mechanism to transforms old XML versions into new ones.

 16

Executing plugin tasks in loops
The control tasks in the UNICOREpro client include DoN and DoRepeat groups that can
execute tasks in iterations. When your plugin ActionGroup will get executed multiple times
all portfolios that have been generated by MakePortfolio or DeclarePortfolio in one iteration
have to be deleted with a DeletePortfolio task at the end of the action graph. If not, the NJS
will complain about an existing portfolio that can not be overwritten in the next iteration.

Testing plugin tasks for return codes
Every sub class of TaskContainer can get tested for return code in an If task or a DoRepeat
group. The TaskContainer contains a method getExecuteTask() that will return the first
ExecuteTask that occurs in the ActionGroup of the TaskContainer. This should be fine for
most plugins, because they will probably contain only one ExecuteTask. If your plugin
container builds multiple ExecuteTasks, you should overwrite the method getExecuteTask(),
to return that task that you want to be tested for return code.

4.4 Adding plugin panels to the outcome area
In the UNICOREpro Client plugins not only can add their own panels to the job preparation
area, but it is also possible to add one or more panels to the job outcome area in the job
monitor.
These additional panels will be added to the tabbed outcome pane and can then display some
plugin specific output, like graphics or tables. It is so possible to directly integrate
visualization components for the plugin task into the Client instead of using external viewers
for the application output.

IPanelProvider
To add outcome panels to your plugin the plugin container has to implement the interface
com.pallas.unicore.Client.panels.IPanelProvider. The interface consists of the following
methods:

public int getNrOfPanels();
Return the number of additional outcome panels provided by this plugin task
public JPanel getPanel(int i);
Return the ith panel. Caution: Be aware that your plugin container will be serialized and
streamed to the NJS. To avoid unnecessary data transfer you should make your outcome
panel a transient field in the container. In the getPanel() method you may check if the
outcome panel is still null and build it there:

private transient YourOutcomePanel outcomePanel;
public JPanel getPanel(int i) {

if(outcomePanel == null) {
outcomePanel = new YourOutcomePanel();

}
return outcomePanel;

}
Do not build the outcome panel in the constructor or each time getPanel() will be called.
public String getPanelTitle(int i);
Return title for ith panel. This title will be displayed at the tabbed pane in the Client’s
outcome panel.
public void finalizePanel();
This method will be called when the job is removed from the Vsite. There may be some
finalization necessary (e.g. stopping threads) that can be performed here.

 17

Getting notifications from the Client
If your additional outcome panel implements the interface
com.pallas.unicore.client.panels.Applyable you will get notified if your panel becomes visible
or new outcome for your task arrives:

public void updateValues();
This method will be executed whenever the additional outcome panel becomes visible, which is
on the tabbed pane event.
public void resetValues();
This method will be executed whenever a new outcome for the job arrives.

5 Extension Plugins
Extension plugins can extend the Client functionality in arbitrary ways. There are several
methods to add new components to the Client GUI. You have to implement only the main
plugin class that should be a sub class of ExtensionPlugable.

JPA toolbar

Settings
item

Extensions
menu

Virtual site
toolbar

Plugin info

Figure 7: GUI components added by an Extension Plugin

5.1 ExtensionPlugable
This class does not contain any abstract methods, so you may just choose to implement the
abstract methods of the base class UnicorePlugable and implement any other functionality
you like. But if you want to add your own controls to the Client GUI you should overwrite
one or more of the public methods implemented in ExtensionPlugable.

Public methods
public Component getVsiteToolBarComponent();
Overwrite this method to return a Component that will be added to the toolbar that is attached
to the virtual site list in a job group panel. Ideally, the component should contain a button
displaying an icon following the Java Look and Feel Design Guidelines. By default the
method returns null, meaning that no component will be added.

 18

public Component getJPAToolBarComponent();
Overwrite this method to return a Component that will be added to the toolbar that is attached
to the job preparation tree. Ideally, the component should contain a button displaying an icon
following the Java Look and Feel Design Guidelines. By default the method returns null,
meaning that no component will be added.
public JMenuItem getCustomMenu();
Overwrite this method to add a plugin controlled item or sub menu to the Client's extension
menu. The Client does not attach a listener to this item, so it is up to the plugin developer to
respond to those item events. By default the method returns null, meaning that no menu item
will be added.
public Object setupSpecialVsiteFeatures(Vsite vsite, AbstractJob
job)
This method checks if the plugin can enable special features for a Vsite. It may for example
create a Globus proxy certifcate for a Globus enabled Vsite.

6 Further Information
We hope that you find all the functionality needed for your plugin in the interface described
here. However, if you are missing something, because you are planning to implement
something we have not thought of yet, please register and post your request at our issue
tracking system at http://roundup.pallas.com/grid-issues. Also all bug reports, comments and
suggestions should go there.

 19

http://roundup.pallas.com/grid-issues

	Overview
	General Client Concepts
	Resource Manager
	Using ActionContainers to encapsulate AJOs
	Accessing Remote File Systems
	RemoteFile
	SelectorDialog
	RemoteTextEditor

	Managing the Outcome
	OutcomeManager
	OutcomeEntry

	Requests
	Observers and Observables
	Useful Requests
	Write your own request

	Plugins
	Plugin Concept
	Loading Plugins
	How to Build a Plugin Jar Archive
	GUI Design Issues
	Plugin Types

	The Main Plugin Class
	Abstract Methods
	Public and Protected Methods

	Task Plugins
	TaskPlugable
	Abstract Methods
	Public and Protected Methods

	Implementing a JPAPanel
	Abstract Methods
	Adding import, export and option panels to your JPAPanel

	Implementing a Plugin Container
	Imports and exports and execution
	Checking for errors in the container
	Using Application Resources
	Adding additional imports or exports to the plugin task
	Storing plugin tasks
	Using binary format
	Using XML

	Executing plugin tasks in loops
	Testing plugin tasks for return codes

	Adding plugin panels to the outcome area
	IPanelProvider
	Getting notifications from the Client

	Extension Plugins
	ExtensionPlugable
	Public methods

	Further Information

