CA Computer Architecture

Copyright (C) 1991, 1992, 1993, 1994, 1995 by the Computational Science Education Project

This electronic book is copyrighted, and protected by the copyright laws of the United States.
This (and all associated documents in the system) must contain the above copyright notice.
If this electronic book is used anywhere other than the project’s original system, CSEP must
be notified in writing (email is acceptable) and the copyright notice must remain intact.

1 Overview

The advantages of programming in a high level language include abstraction and portability.
Abstraction means programmers can describe algorithms in a “high level” notation that is
independent of details about the machine that will execute the algorithm. Portability is a
byproduct of abstraction that allows programs to be run on a wide variety of computers as
long as there is a compiler that will translate them for each machine.

In most programming situations reality is close to the ideal. Compilers for many high
level languages are very good at generating efficient and portable code for typical computer
systems, so programmers are able to express algorithms in high level languages and expect
them to run efficiently on almost any machine. There may be a few isolated places where
a programmer who invests a lot of effort may be able to write a more efficient routine in
assembly language (the native language of the machine), but it is hardly ever worth the effort
to write an entire program in assembly language. Obviously when all or part of a program
is written in assembler it is not as abstract, since assembly language is the language of the
machine and not the language of the application, and it is no longer portable from one
machine to another.

It is not necessary to write a lower level program in order to compromise abstraction and
portability. As a simple example, suppose a program multiplies a value x by 2. The obvious
way to write this in C is “2*x”. But il a programmer knows the machine that will execute
this program has a slow multiplication instruction, and knows that integers are represented in
binary, she can use the expression “x << 1" instead.! The resulting program is less abstract

"In C “2#x” means “shift x left one bit”, an operation that most machines do very efficiently. The binary
number system and why shifting left is equivalent to multiplication will be described later in this chapter,
and the C programming language is described in the chapter on programming languages.

Basic Computer Architecture 3

efficient as they could be and to transform them so they make better use of the underlying
machine. We cannot hope to present a comprehensive collection of performance tips for
languages and systems likely to be used in computational science. Rather we aim to give
enough background information on common structures such as vector processors and cache
memories so you will be able to (a) recognize when your program is not performing near the
capacity of your system, (b) understand performance improvement techniques recommended
by the compiler writers and/or system architects of your system, and (c) decide whether the
benefits of increased performance are worth sacrificing abstraction and portability.

Another, closely related, goal is to provide the necessary background in computer archi-
tecture to evaluate competing algorithms to decide which is likel
a given machine, even before they are expressed in a programming language. Performance
will depend on several factors, for example how data is laid out in memory and the patterns
in which it is accessed. In many cases an algorithm with worse asymptotic complexity may
turn out to be the best for a certain class of machines because it requires fewer processors
or less memory (see Numerical Linear Algebra).

The chapter begins with an overview of basic computer architecture. It describes the
main components of a typical system and how they interact. Section 3, is on the architecture
and implementation of modern high performance systems, including vector processors and
parallel processors; readers who are already familiar with basic computer architecture may
want to skip directly to this section. In both sections we will describe the basic concepts,
introduce performance models, and discuss factors that limit efficient use of the machines.
Programming issues, for example organizing loops so they can be executed more efficiently
by a vector processor or accessing data structures in ways that are most efficient for certain
memory systems, are discussed in the chapter on programming languages

v to be the most efficient for

2 Basic Computer Architecture

The main components in a typical computer system are the processor, memory, input /output
devices, and the communication channels that connect them.

The processor is the workhorse of the system; it is the component that executes a program
by performing arithmetic and logical operations on data. It is the only component that
creates new information by combining or modifying current information. In a typical system
there will be only one processor, known at the central processing unit, or CPU. Modern high
performance systems, for example vector processors and parallel processors, often have more
than one processor. Systems with only one processor are serial processors, or, especially
among computational scientists, scalar processors.

Memory is a passive component that simply stores information until it is requested by
another part of the system. During normal operations it feeds instructions and data to the
processor, and at other times it is the source or destination of data transferred by 1/O devices.
Information in a memory is accessed by its address. In programming language terms, one
can view memory as a one-dimensional array M. A processor’s request to the memory might

than the original, since one of its operations is defined in machine level terms (shifting a
pattern of bits) instead of mathematical terms (multiplication). It is less portable, since it
now runs only on machines that use binary to represent integers (a pretty safe bet) and is
efficient only on machines that shift bits in a single operation.

There are situations where programmers need to use knowledge of the underlying com-
puter system in order to optimize programs written in high level languages, and computa-
tional scientists will often find themselves in these situations. If a program runs for day

, or
even weeks, an optimization that improves execution by just a few percent can save many
hours, which translates into real savings if the program runs at a supercomputer center
where the scientist pays for CPU time. Another factor is that high performance computers

used by computational scientists are much more complicated than other machines, and a

compiler may not be able to translate a program efficiently without a little help from the

programmer. A common situation is a loop written in Fortran, which, if written carefully,

can be translated into a single instruction for a vector processor. Computational scientists

often use the newest machines, and these are the machines most likely to have immature
compilers. It takes several years experience with real programs for compiler writers to learn
ring

how to develop optimizations that will more fully exploit the capabilities of the under]
machine, and in many cases the theory behind the optimizations has yet to be worked out.
For example, techniques for optimal mapping of independent pieces of a parallel program so
they can be executed simultanecously on different nodes in a parallel processor is an active
arca of research in computer science. Programmers who use parallel processors often need
to allocate tasks themselves using system- dependent library routines to send information
from one task to another. Knowing how processors are interconnected will have an impact
on how efficiently messages are passed.

Computer scientists used three related terms to describe the general area of low-level
machine organization. Computer architecture is the study of the components that make
up computer systems and how they are interconnected. Computer organization is concerned
with the implementation of a computer architecture. As an example of the difference between
architecture and implementation, consider the vector supercomputers from Cray Research.
These machines have very similar architectures from a programmer’s point of view: pro-
cessors in these systems have the same number of internal registers (temporary storage)
for both vector and scalar data, they have the same basic instruction set, and operands
in main memory have the same formats. The systems have very different organizations,
however, since they may have a different number of processors, memory sizes may vary,
operands are transferred from memory to the processor in different ways, and the time to
execute an instruction varies from one system to another. Computer engineering refers to
the actual construction of a system: lengths of wires, sizes of circuits, cooling and electrical
requirements, etc. Programmers often use knowledge of a system’s architecture, and some-
times organization, to optimize performance of their programs, but rarely, il ever, are they
concerned with engineering aspects.

The goal of this chapter is to introduce the basic concepts of computer architecture and
organization in order to allow computational scientists to recognize when programs are not as

be “send the instruction at location M[1000]1” or a disk controller’s request might be “store
the following block of data in locations M[0] through M[255].”

Input /output (I/O) devices transfer information without altering it between the external
world and one or more internal components. I/O devices can be secondary memories, for
example disks and tapes, or devices used to communicate directly with users, such as video

displays, keyboards, and mouses.

The communication channels that tie the system together can either be simple links that
connect two devices or more complex switches that interconnect several components and
allow any two of them to communicate at a given point in time. When a switch is configured
to allow two devices to exchange information, all other devices that rely on the switch are
blocked, i.c. they must wait until the switch can be reconfigured.

A common convention used in drawing simple “stick figures” of computer systems is the
PMS notation [32]. In a PMS diagram each major component is represented by a single letter,
e.g. P for processor, M for memory, or S for switch. A subscript on a letter distinguished
. Lines

different types of components, e.g. M, for primary memory and M. for cache memor.
connecting two components represent links, and lines connecting more than two components
represent a switch. Although they are primitive and might appear at first glance to be too
simple, PMS diagrams convey quite a bit of information and have several advantages, not
the least of which is they are independent of any particular manufacturer’s notations.

As an example of a PMS diagram and a relatively simple computer architecture, Figure 1
shows the major components of the original Apple Macintosh personal computer. The first
thing one notices is a single communication channel, known as the bus, that connects all
the other major components. Since the bus is a switch, only two of these components can
communicate at any time. When the switch is configured for an 1/O transfer, for example
from main memory (M,) to the disk (via Ky), the processor is unable to fetch data or
instructions and remains idle. This organization is typical of personal computers and low

end workstations; mainframes, supercomputers, and other high performance systems have
much richer (and thus more expensive) structures for connecting I/O devices to internal

main memory that allow the processor to keep working at full speed during I/O operations.

2.1 Processors

The operation of a processor is characterized by a fetch-decode-execute cycle. In the first
phase of the cycle, the processor fetches an instruction from memory. The address of the

instruction to fetch is stored in an internal register? named the program counter, or PC.
As the processor is waiting for the memory to respond with the instruction, it increments
the PC. This means the fetch phase of the next cycle will fetch the instruction in the next
sequential location in memory (unless the PC is modified by a later phase of the cycle).

In the decode phase the processor stores the information returned by the memory in
another internal register, known as the instruction register, or IR. The IR now holds a single

2A register is a small piece of memory large enough to hold a single number

Basic Computer Architecture 5

P = processor

M = memory

S = switch

K = controller

X = external device

Sbus

Pcpu Mp Mrom ia Ksee Kdisk

) | |—|—| |
display Xkbd Ksio

Xmouse

Pepu: MC68000, 7.8MHz cycle

Mp: primary memory; 128KB or 512KB dynamic RAM
Myom: 64KB PROM; “toolbox”

Kgisk: proprietary floppy disk controller

Figure 1: PMS Diagram of the Apple Macintosh

Basic Computer Architecture 7

2.2 Memories

Memories are characterized by their function, capacity, and response times. Operations on
memories are called reads and writes, defined from the perspective of a processor or other
device that uses a memory: a read transfers information from the memory to the other
device, and a write transfers information into the memory. A memory that performs both
reads and writes is often just called a RAM, for random access memory. The term “random
access” means that if location M[x] is accessed at time ¢, there are no restrictions on the
address of the item accessed at time ¢ 4+ 1. Other types of memories commonly used in
systems are read-only memory, or ROM, and programmable read-only memory, or PROM
(information in a ROM is set when the chips are designed; information in a PROM can be
written later, one time only, usually just before the chips are inserted into the system). For
example, the Apple Macintosh, shown in Figure 1, had a PROM called the “toolbox” that
contained code for commonly used operating system functions.

The smallest unit of information is a single bit, which can have one of two values. The
capacity of an individual memory chip is often given in terms of bits. For example one might
have a memory built from 64Kb (64 kilobit) chips. When discussing the capacity of an entire
memory system, however, the preferred unit is a byte, which is commonly accepted to be 8
bits of information. Memory sizes in modern systems range from 4MB (megabytes) in small
personal computers up to several billion bytes (gigabytes, or GB) in large high-performance
systems. Note the convention that lower case b is the abbreviation for bit and upper case B
is the symbol for bytes.

The performance of a memory system is defined by two different measures, the access
time and the cycle time. Access time, also known as response time or latency, refers to how
quickly the memory can respond to a read or write request. Several factors contribute to the
access time of a memory system. The main factor is the physical organization of the memory
chips used in the system. This time varies from about 80 ns in the chips used in personal
computers to 10 ns or less for chips used in caches and buffers (small, fast memories used for
temporary storage, described in more detail below). Other factors are harder to measure.
They include the overhead involved in selecting the right chips (a complete memory system
will have hundreds of individual chips), the time required to forward a request from the
processor over the bus to the memory system, and the time spent waiting for the bus to
finish a previous transaction before initiating the processor’s request. The bottom line is
that the response time for a memory system is usually much longer than the access time of
the individual chips.

Memory cycle time refers to the minimum period between two successive requests. For
various reasons the time separating two successive requests is not always 0, i.e a memory
with a response time of 80 ns cannot satisly a request every 80 ns. A simple, if old, example
of a memory with a long cycle time relative to its access time is the magnetic core used
in early mainframe computers. In order to read the value stored in memory, an electronic
pulse was sent along a wire that was threaded through the core. If the core was in a given
state, the pulse induced a signal on a second wire. Unfortunately the pulse also erased the
information that used to be in memory, i.e. the memory had a destructive read-out. To get

machine instruction, encoded as a binary number. The processor decodes the value in the
IR in order to figure out which operations to perform in the next stage.

In the execution stage the processor actually carries out the instruction. This step often
requires further memory operations; for example, the instruction may direct the processor
to fetch two operands from memory, add them, and store the result in a third location (the
addresses of the operands and the result are also encoded as part of the instruction). At the
end of this phase the machine starts the cycle over again by entering the fetch phase for the
next instruction.

Instructions can be classified as one of three major types: arithmetic/logic, data trans-
fer, and control. Arithmetic and logic instructions apply primitive functions of one or two
arguments, for example addition, multiplication, or logical AND. In some machines the ar-
guments are fetched from main memory and the result is returned to main memory, but
more often the operands are all in registers inside the CPU. Most machines have a set of
general purpose registers that can be used for holding such operands. For example the HP-
PA processor in Hewlett-Packard workstations has 32 such registers, each of which holds a
single number.

The data transfer instructions move data from one location to another, for example
between registers, or {rom main memory to a register, or between two different memory
locations. Data transfer instructions are also used to initiate I/O operations.

Control instructions modify the order in which instructions are executed. They are used
to construct loops, if-then-else constructs, etc. For example, consider the following DO loop
in Fortran:

DO 10 I=1,5
10 CONTINUE

To implement the bottom of the loop (at the CONTINUE statement) there might be an
arithmetic instruction that adds 1 to I, followed by a control instruction that compares I to
5 and branches to the top of the loop if I is less than or equal to 5. The branch operation is
performed by simply setting the PC to the address of the instruction at the top of the loop.

The timing of the fetch, decode, and execute phases depends on the internal construction
of the processor and the complexity of the instructions it executes. The quantum time unit
for measuring operations is known as a clock cycle. The logic that directs operations within a
processor is controlled by an external clock, which is simply a circuit that generates a square
wave with a fixed period. The number of clock cycles required to carry out an operation
determines the amount of time it will take.

One cannot simply assume that if a multiplication can be done in f,, nanoseconds then
it will take n - £,, nanoseconds to perform n multiplications or that if a branch instruction
takes £, nanoseconds the next instruction will begin execution #; nanoseconds following the
branch. The actual timings depend on the organization of the memory sy
communication channels that connect the processor to the memory; these are the topics of
the next two sections.

ystem and the

around this problem designers built memory systems so that each time something was read
a copy was immediately written back. During this write the memory cell was unavailable for
further requests, and thus the memory had a cycle time that was roughly twice as long as its
access time. Some modern semiconductor memories have destructive reads, and there may
be several other reasons why the cycle time for a memory is longer than the access time.

Although processors have the freedom to access items in a RAM in any order, in practice
the pattern of references is not random, but in fact exhibits a structure that can be exploited
to improve performance. The fact that instructions are stored sequentially in memory (recall
that unless there is a branch, PC is incremented by one each time through the fetch-decode-
execute cycle) is one source of regularity. What this means is that if a processor requests
an instruction from location x at time ¢, there is a high probability that it will request an
instruction from location x 4+ 1 in the near future at time ¢ 4+ 6. References to data also
show a similar pattern; for example if a program updates every element in a vector inside a
small loop the data references will be to v[0], v[1], ... This observation that memory
references tend to cluster in small groups is known as locality of reference.

Locality of reference can be exploited in the following way. Instead of building the entire
memory out of the same material, construct a hierarchy of memories, each with different
capacities and access times. At the top of the hierarchy there will be a small memory,
perhaps only a few KB, built from the fastest chips. The bottom of the hierarchy will be
the largest but slowest memory. The processor will be connected to the top of the hierarchy,
i.e. when it fetches an instruction it will send its request to the small, fast memory. If thi:
memory contains the requested item, it will respond, and the request is satisfied. If a memory
does not have an item, it forwards the request to the next lower level in the hierarchy.

The key idea is that when the lower levels of the hierarchy send a value from location z
to the next level up, they also send the contents of @ + 1, z + 2, etc. If locality of reference
holds, there is a high probability there will soon be a request for one of these other items; if
there is, that request will be satisfied immediately by the upper level memory.

The following terminology is used when discussing hierarchical memories:

The memory closest to the processor is known as a cache. Some systems have separate
caches for instructions and data, in which case it has a split cache. An instruction
buffer is a special cache for instructions that also performs other functions that make
fetching instructions more efficient.

The main memory is known as the primary memory.

The low end of the hierarchy is the secondary memory. It is often implemented by a
disk, which may or may not be dedicated to this purpose.

The unit of information transferred between items in the hierarchy is a block. Blocks
transferred to and from cache are also known as cache lines, and units transferred
between primary and secondary memory are also known as pages.

Basic Computer Architecture 9

e Eventually the top of the hierarchy will fill up with blocks transferred from the lower
levels. A replacement strategy determines which block currently in a higher level will be
removed to make room for the new block. Common replacement strategies are random
replacement (throw out any current block at random), first-in-first-out (FIFO; replace
the block that has been in memory the longest), and least recently used (LRU; replace
the block that was last referenced the furthest in the past).

A request that is satisfied is known as a hit, and a request that must be passed to a
lower level of the hierarchy is a miss. The percentage of requests that result in hits
determines the hit rate. The hit rate depends on the size and organization of the
memory and to some extent on the replacement policy. It is not uncommon to have a
hit rate near 99% for caches on workstations and mainframes.

The performance of a hierarchical memory is defined by the effective access time, which
is a function of the hit ratio and the relative access times between successive levels of the
hierarchy. For example, suppose the cache access time is 10ns, main memory access time is
100ns, and the cache hit rate is 98%. Then the average time for the processor to access an
item in memory is

Legp = 098 legene +0.02 - L
= 11.8ns

Over a long period of time the system performs as if it had a single large memory with an
11.8ns cycle time, thus the term “effective access time.” With a 98% hit rate the system
performs nearly as well as if the entire memory was constructed from the fast chips used to
implement the cache, i.e. the average access time is 11.8ns, even though most of the memory
is built using less expensive technology that has an access time of 100ns.

Although a memory hierarchy adds to the complexity of a memory system, it does not
necessarily add to the latency for any particular request. There are efficient hardware algo-
rithms for the logic that looks up addresses to see if items are present in a memory and to
help implement replacement policies, and in most cases these circuits can work in parallel
with other circuits so the total time spent in the fetch-decode-execute cycle is not lengthened.

2.3 Buses

A bus is used to transfer information between several different modules. Small and mid-range
computer systems, such as the Macintosh shown in Figure 1 have a single bus connecting
all major components. Supercomputers and other high performance machines have more
complex interconnections, but many components will have internal buses.

Communication on a bus is broken into discrete transactions. Each transaction has a
sender and receiver. In order to initiate a transaction, a module has to gain control of
the bus and become (temporarily, at least) the bus master. Often several devices have the

Basic Computer Architecture 11

into and out of main memory.

The rest of this section contains a brief discussion of video displays. These output devices
and their capabilities also vary from system to system, but since scientific visualization is
such a prominent part of this book we should introduce some concepts and terminology for
readers who are not familiar with video displays.

Most users who generate high quality images will do so on workstations configured with
extra hardware for creating and manipulating images. Almost every workstation manufac-
turer includes in its product line versions of their basic systems that are augmented with
extra processors that are dedicated to drawing images. These extra processors work in
parallel with the main processor in the workstation. In most cases data generated on a
supercomputer is saved in a file and later viewed on a video console attached to a graphics
workstation. However there are situations that make use of high bandwidth connections
from supercomputers directly to video displays; these are useful when the computer is gen-
crating complex data that should be viewed in “real time.” For example, a demonstration
program {rom Thinking Machines, Inc. allows a user to move a mouse over the image of a
fluid moving through a pipe. When the user pushes the mouse button, the position of the
mouse is sent to a parallel processor which simulates the path of particles in a turbulent
flow at this position. The results of the calculations are sent directly to the video display,
which shows the new positions of the particles in real time. The net effect is as if the user
is holding a container of fluid that is being poured into the pipe.

There are many different techniques for drawing images with a computer, but the domi-
nant technology is based on a raster scan. A beam of electrons is directed at a screen that
contains a quick-fading phosphor. The beam can be turned on and off very quickly, and it
can be bent in two dimensions via magnetic fields. The beam is swept from left to right
(from the user’s point of view) across the screen. When the beam is on, a small white dot
will appear on the screen where the beam is aimed, but when it is off the screen will remain
dark. To paint an image on the entire screen, the beam is swept across the top row; when it
reaches the right edge, it is turned off, moved back to the left and down one row, and then
swept across to the right again. When it reaches the lower right corner, the process repeats
again in the upper left corner.

The number of times per second the full screen is painted determines the refresh rate. If
the rate is too low, the image will flicker, since the bright spots on the phosphor will fade
before the gun comes back to that spot on the next pass. Refresh rates vary from 30 times
per second up to 60 times per second.

The individual locations on a screen that can be either painted or not are known as pizels
(from “picture cell”). The resolution of the image is the number of pixels per inch. A high
resolution display will have enough pixels in a given area that from a reasonable distance
(an arm’s length away) the gaps between pixels are not visible and a sequence of pixels that
are all on will appear to be a continuous line. A common screen size is 1280 pixels across
and 1024 pixels high on a 16” or 19” monitor.

The controller for the electron gun decides whether a pixel will be black or white by
reading information from a memory that has one bit per pixel. If the bit is a 1, the pixel

10

ability to become the master; for example, the processor controls transactions that transfer
instructions and data between memory and CPU, but a disk controller becomes the bus
master to transfer blocks between disk and memory. When two or more devices want to
transfer information at the same time, an arbitration protocol is used to decide which will
be given control first. A protocol is a set of signals exchanged between devices in order to
perform some task, in this case to agree which device will become the bus master.

Once a device has control of the bus, it uses a communication protocol to transfer the
information. In an asynchronous (unclocked) protocol the transfer can begin at any time,
but there is some overhead involved in notifying potential receivers that information needs
to be transferred. In a synchronous protocol transfers are controlled by a global clock and
begin only at well-known times.

The performance of a bus is defined by two parameters, the transfer time and the overall
bandwidth (sometimes called throughput). Transfer time is similar to latency in memories: it
is the amount of time it takes for data to be delivered in a single transaction. For example,
the transfer time defines how long a processor will have to wait when it fetches an instruction
from memory. Bandwidth, expressed in units of bits per second (bps), measures the capacity
of the bus. It is defined to be the product of the number of bits that can be transferred in
parallel in any one transaction by the number of transactions that can occur in one second.
For example, if the bus has 32 data lines and can deliver 1,000,000 packets per second, it
has a bandwidth of 32Mbps.

At first it may seem these two parameters measure the same thing, but there are subtle
differences. The transfer time measures the delay until a piece of data arrives. As soon as the
data is present it may be used while other signals are passed to complete the communication
protocol. Completing the protocol will delay the next transaction, and bandwidth takes this
extra delay into account. Another factor that distinguishes the two is that in many high
performance systems a block of information can be transferred in one transaction; in other
words, the communication protocol may say “send n items from location z.” There will be
some initial overhead in setting up the transaction, so there will be a delay in receiving the
first piece of data, but after that information will arrive more quickly.

Bandwidth is a very important parameter. It is also used to describe processor perfor-
mance, when we count the number of instructions that can be executed per unit time, and
the performance of networks.

2.4 1/0

Many computational science applications generate huge amounts of data which must be
transferred between main memory and I/O devices such as disk and tape. We will not
attempt to characterize file I/O in this chapter since the devices and their connections to the
rest of the system tend to be idiosyncratic. If your application needs to read or write large
data files you will need to learn how your system organizes and transfers files and tune your
application to fit that system. It is worth reiterating, though, that performance is measured
in terms of bandwidth: what counts is the volume of data per unit of time that can be moved

12

will be painted, otherwise it will remain dark. From the PMS diagram in Figure 1 you can
see that the display memory on the Macintosh was part of the main memory. The operating
system set aside a portion of the main memory for displays, and all an application had to do
to paint something on the screen was to write a bit pattern into this portion of memory. This
was an economical choice for the time (early 1980s), but it came at the cost of performance:
the processor and video console had to alternate accesses to memory. During periods when
the electron gun was being moved back to the upper left hand corner, the display did not
access memory, and the processor was able to run at full speed. Once the gun was positioned
and ready for the next scan line, however, the processor and display went back to alternating
memory cycles.

With the fall in memory prices and the rising demand for higher performance, modern
systems use a dedicated memory known as a frame buffer for holding bit patterns that
control the displays. On inexpensive systems the main processor will compute the patterns
and transfer them to the frame buffer. On high performance systems, though, the main
processor sends information to the “graphics engine”, a dedicated processor that performs
the computations. For example, if the user wants to draw a rectangle, the CPU can send the
coordinates to the graphics processor, and the latter will figure out which pixels lie within
the rectangle and turn on the corresponding bits in the frame buffer. Sophisticated graphics
processors do all the work required in complex shading, texturing, overlapping of objects
(deciding what is visible and what is not), and other operations required in 3D images.

The discussion so far has dealt only with black and white images. Color displays are
based on the same principles: a raster scan illuminates regions on a phosphor, with the
information that controls the display coming {rom a frame buffer. However, instead of one
gun there are three, one for each primary color. When combining light, the primary colors
are red, green, and blue, which is why these displays are known as RGB monitor.* Since we
need to specify whether or not each gun should be on for each pixel, the frame buffer will
have at least three bits per pixel. To have a wide variety of colors, though, it is not enough
just to turn a gun on or off; we need to control its intensity. For example, a violet color can
be formed by painting a pixel with the red gun at 61% of full intensity, green at 24%, and
blue at 80%.

Typically a system will divide the range of intensities into 256 discrete values, which
means the intensity can be represented by an 8-bit number. 8 bits times 3 guns means 24
bits are required for each pixel. Recall that high resolution displays have 1024 rows of 1280
pixels each, for a total of 1.3 million pixels. Dedicating 24 bits to each pixel would require
almost 32MB of RAM for the frame buffer alone. What is done instead is to create a color
map with a fixed number of entries, typically 256. Each entry in the color map is a full 24

3Combining primaries to make secondary and other colors is very different for additive, light-based colors
than it is for subtractive, paint-based colors. With paints, the primaries are red, blue, and yellow. As an
example, combining red and yellow paint in equal proportions creates an orange paint. To create an orange
light, however, one needs to combine two parts red, one part green, and no blue. X windows users who are
curious to see how RGB primaries are combined to make their favorite colors can look at the system color
database, usually in a file named /usr/1ib/X11/rgb. txt.

Basic Computer Architecture 13

bits wide. Each pixel only needs to identify a location in the map that contains its color, and
since a color map of 256 entries requires only 8 bits per pixel to specify one of the entries
there is a savings of 16 bits per pixel. The drawback is that only 256 different colors can be
displayed in any one image, but this is enough for all applications except those that need to
create highly realistic images.

2.5 Operating Systems

The user’s view of a computer system is of a complex set of services that are provided by a
combination of hardware (the architecture and its organization) and software (the operating
system). Attributes of the operating system also affect the performance of user programs.

Operating systems for all but the simplest personal computers are multi-tasking operating
systems. This means the computer will be running several jobs at once. A program is a static
description of an algorithm. To run a program, the system will decide how much memory
it needs and then start a process for this program; a process (also known as a task) can be
viewed as a dynamic copy of a program. For example, the C compiler is a program. Several
different users can be compiling their code at the same time; there will be a separate process
in the system for each of these invocations of the compiler.

Processes in a multi-tasking operating system will be in one of three states. A process is
active if the CPU is executing the corresponding program. In a single processor system there
will be only one active process at any time. A process is idle if it is waiting to run. In order
to allocate time on the CPU fairly to all processes, the operating system will let a process
run for a short time (known as a time slice; typically around 20ms) and then interrupt it,
change its status to idle, and install one of the other idle tasks as the new active process.
The previous task goes to the end of a process queue to wait for another time slice.

The third state for a process is blocked. A blocked process is one that is waiting for some
external event. For example, if a process needs a piece of data from a file, it will call the
operating system routine that retrieves the information and then voluntarily give up the
remainder of its time slice. When the data is ready, the system changes the process’ state
from blocked to idle, and it will be resumed again when its turn comes.

The predominant operating systems for workstations is Unix, developed in the 1970s at
Bell Labs and made popular in the 1980s by the University of California at Berkeley. Even
though there may be just one user, and that user is executing only one program (e.g. a text
editor), there will be dozens of tasks running. Many Unix services are provided by small
systems programs known as daemons that are dedicated to one special purpose. There are
daemons for sending and receiving mail, using the network to find files on other systems,
and several other jobs.

The fact that there may be several processes running in a system at the same time as
your computational science application has ramifications for performance. One is that it
makes it slightly more difficult to measure performance. You cannot simply start a program,
look at your watch, and then look again when the program stops to measure the time spent.
This measure is known as real time or “wall-clock time,” and it depends as much on the

Basic Computer Architecture 15

or even what medium is used. In an electronic memory, 1 could stand for a positively charged
region of semiconductor and 0 for a neutral region, or on a device that can be magnetized a
1 would represent a portion of the surface that has a flux in one direction, while a 0 would
indicate a flux in the opposite direction. It is only important that the mapping from the set
{1,0} to the two states be consistent and that the states can be detected and modified at
will.

Systems usually deal with fixed-length strings of binary digits. The smallest unit of
memory is a single bit, which holds a single binary digit. The next largest unit is a byte, now
universally recognized to be eight bits (early systems used anywhere from six to eight bits
per byte). A word is 32 bits long in most workstations and personal computers, and 64 bits
in supercomputers. A double word is twice as long as a single word, and operations that use
double words are said to be double precision operations.

Storing a positive integer in a system is trivial: simply write the integer in binary and
use the resulting string as the pattern to store in memory. Since numbers are usually stored
one per word, the number is padded with leading 0’s first. For example, the number 52 is
represented in a 16-bit word by the pattern 0000000000110100.

The meaning of an n-bit string s when it is interpreted as a binary number is defined by
the formula, x = sy x 277" 8, x 2772 4 45,4 x 2" +5, x 2% i.e. bit number i has weight:

n

r=) s x 2"

i

Compiler writers and assembly language programmers often take advantage of the binary
number system when implementing arithmetic operations. For example, if the pattern of
bits is “shifted left” by one, the corresponding number is multiplied by two. A left shift is
performed by moving every bit left and inserting 0’s on the right side. In an 8-bit system,
for example, the pattern 00000110 represents the number 6; if this pattern is shifted left,
the resulting pattern is 00001100, which is the representation of the number 12. In general,
shifting left by n bits is equivalent to multiplying by 2"

Shifts such as these can be done in one machine cycle, so they are much faster than
multiplication instructions, which usually takes several cycles. Other “tricks” are using a
right shift to implement integer division by a power of 2, in which the result is an integer
and the remainder is ignored (e.g. 15 + 4 = 3) and taking the modulus or remainder with
respect to a power of 2 (see problem 8).

A fundamental relationship about binary patterns is that there are 2" distinct n-digit
strings. For example, for n = 8 there are 2% = 256 different strings of 1's and 0’s. From this
relationship it is easy to see that the largest integer that can be stored in an n-bit word is
2" —1: the 2" patterns are used to represent the 2" integers in the interval [0,...2" — 1].

An overflow occurs when a system generates a value greater than the largest integer. For
example, in a 32-bit system, the largest positive integer is 2*2 — 1. = 4,294,976,295. If a
program tries to add 3,000,000,000 and 2,000,000,000 it will cause an overflow. Right away

we can see one source of problems that can arise when moving a program from one system

14

number of other processes in the system as it does on the performance of your program.
Your program will take longer to run on a heavily-loaded system since it will be competing
for CPU cycles with those other jobs. To get an accurate assessment of how much time is
required to run your program you need to measure CPU time. Unix and other operating
systems have system routines that can be called from an application to find out how much
CPU time has been allocated to the process since it was started.

Another impact of having several other jobs in the process queue is that as they are
executed they work themselves into the cache, displacing your program and data. During
your application’s time slice its code and data will fill up the cache. But when the time slice
is over and a daemon or other user’s program runs, its code and data will soon replace yours,
so that when yours resumes it will have a higher miss rate until it reloads the code and
data it was working on when it was interrupted. This period during which your information
is being moved back into the cache is known as a reload transient. The longer the interval
between time slices and the more processes that run during this interval the longer the reload
transient.

Supercomputers and parallel processors also use variants of Unix for their runtime envi-
ronments. You will have to investigate whether or not daemons run on the main processor
or a “front end” processor and how the operating system allocates resources. As an example
of the range of alternatives, on an Intel Paragon XPS with 56 processors some processors
will be dedicated to system tasks (e.g. file transfers) and the remainder will be split among
users so that applications do not have to share any one processor. The MasPar 1104 consists
of a front-end (a DEC workstation) that handles the system tasks and 4096 processors for
user applications. Each processor has its own 64KB RAM. More than one user process can
run at any one time, but instead of allocating a different set of processors to each job the
operating system divides up the memory. The memory is split into equal size partitions, for
example 8KB, and when a job starts the system figures out how many partitions it needs.
All 4096 processors execute that job, and when the time slice is over they all start working
on another job in a different set of partitions.

2.6 Data Representations

Another important interaction between user programs and computer architecture is in the
representation of numbers. This interaction does not affect performance as much as it does
portability. Users must be extremely careful when moving programs and/or data files from
one system to another because numbers and other data are not always represented the same
way. Recently programming languages have begun to allow users to have more control over
how numbers are represented and to write code that does not depend so heavily on data
representations that it fails when executed on the “wrong” system.

The binary number system is the starting point for representing information. Allitems in
a computer’s memory - numbers, characters, instructions, etc. - are represented by strings of
1’s and 0’s. These two values designate one of two possible states for the underlying physical
memory. It does not matter to us which state corresponds to 1 and which corresponds to 0,

16

to another: if the word size is smaller on the new system a program that runs successfully
on the original system may crash with an overflow error on the new system.

There are two different techniques for representing negative values. One method is to
divide the word into two ficlds, i.e. represent two different types of information within the
word. We can use one field to represent the sign of the number, and the other field to
represent the value of the number. Since a number can be just positive or negative, we
need only one bit for the sign field. Typically the leftmost bit represents the sign, with
the convention that a 1 means the number is negative and a 0 means it is positive. This
type of representation is known as a sign-magnitude representation, after the names of the
two fields. For example, in a 16-bit sign-magnitude system, the pattern 1000000011111111
represents the number and the pattern 0000000000000101 represents +5.

The other technique for representing both positive and negative integers is known as two’s
complement. It has two compelling advantages over the sign-magnitude representation, and
is now universally used for integers, but as we will see below sign-magnitude is still used
to represent real numbers. The two’s complement method is based on the fact that binary
arithmetic in fixed-length words is actually arithmetic over a finite cyclic group. If we ignore
overflows for a moment, observe what happens when we add 1 to the largest possible number
in an n-bit system (this number is represented by a string of n 1’s):

1111, 1111
s+ 1
10000 ... 0000

The result is a pattern with a leading 1 and n 0’s. In an n-bit system only the low order n
bits of each result are saved, so this sum is functionally equivalent to 0. Operations that lead
to sums with very large values “wrap around” to 0, i.e. the system is a finite cyclic group.
Operations in this group are defined by arithmetic modulo 2.

For our purposes, what is interesting about this type of arithmetic is that 27, which is
represented by a 1 followed by n 0’s, is equivalent to 0, which means 2" — z = —z for all ©
between 0 and 2" — 1. A simple “trick” that has its roots in this fact can be applied to the
bit pattern of a number in order to calculate its additive inverse: if we invert every bit (turn
a 1 into a 0 and vice versa) in the representation of a number x and then add 1, we come
up with the representation of —z. For example, the representation of 5 in an 8-bit system is
00000101. Inverting every bit and adding 1 to the result gives the pattern 11111011. This
is also the representation of 251, but in arithmetic modulo 25 we have so this pattern is a
perfectly acceptable representation of —5 (see problem 7).

In practice we divide all n-bit patterns into two groups. Patterns that begin with 0
represent the positive integers 0 < & < 27! — 1 and patterns beginning with 1 represent the
negative integers —2"~! < z < 0. To determine which integer is represented by a pattern
that begins with a 1, compute its complement (invert every bit and add 1). For example, in
an 8-bit two's complement system the pattern 11100001 represents , since the complement is
00011110 + 1 = 000111115 = 3149. Note that the leading bit determines the sign, just as in

Basic Computer Architecture 17

a sign-magnitude system, but one cannot simply look at the remaining bits to ascertain the
magnitude of the number. In a sign-magnitude system, the same pattern represents —97.

The first step in defining a representation for real numbers is to realize that binary nota-
tion can be extended to cover negative powers of two, e.g. the string “110.101” is interpreted
as

Ix 2241 x 2041 x27 40 %272+ 1 x27% =6.625

Thus a straightforward method for representing real numbers would be to specify some
location within a word as the “binary point” and give bits to the left of this location weights
that are positive powers of two and bits to the right weights that are negative powers of two.
For example, in a 16-bit word, we can dedicate the rightmost 5 bits for the fraction part
and the leftmost 11 bits for the whole part. In this system, the representation of 6.625 is
0000000011010100 (note there are leading 0’s to pad the whole part and trailing 0's to pad
the fraction part). This representation, where there is an implied binary point at a fixed
location within the word, is known as a fized point representation.

There is an obvious tradeofl between range and precision in fixed point representations.
n bits for the fraction part means there will be 2" numbers in the system between any two
successive integers. With 5 bit fractions there are 32 numbers in the system between any
two integers; e.g. the numbers between 5 and 6 are 5% (5.03125), 53% (5.03125), etc. To
allow more precision, i.e. smaller divisions between successive numbers, we need more bits
in the fraction part. The number of bits in the whole part determines the magnitude of
the largest positive number we can represent, just as it does for integers. With 11 digits
in the whole part, as in the example above, the largest number we can represent in 16 bits
is 11111111111.11111, = 2047.9687515. Moving one bit from the whole part to the fraction
part in order to increase precision cuts the range in half, and the largest number is now
TITITI111L.111111, = 1023.98437540.

To allow for a larger range without sacrificing precision, computer systems use a technique
known as floating point. This representation is based on the familiar “scientific notation” for
expressing both very large and very small numbers in a concise format as the product of a
small real number and a power of 10, e.g. 6.022 x 10%*. This notation has three components:
a base (10 in this example); an exponent (in this case 23); and a mantissa (6.022). In
computer systems, the base is either 2 or 16. Since it never changes for any given computer
system it does not have to be part of the representation, and we need only two fields to
specily a value, one for the mantissa and one for the exponent.

As an example of how a number is represented in floating point, consider again the
number 6.625. In binary, it is

110.101 x 2° = 1.10101 x 2*

If a 16-bit system has a 10-bit mantissa and 6-bit exponent, the number would be represented
by the string 1101010000 000010. The mantissa is stored in the first ten bits (padded on the
right with trailing 0’s), and the exponent is stored in the last six bits.

Basic Computer Architecture 19

number. The arithmetic circuitry will produce a binary pattern that is close to the desired
result, but not an exact representation. An interesting illustration of just how common these
round-off errors are is the fact that 1 does not have a finite representation in binary, but is
instead the infinitely repeating pattern 0.0001100110011 ---%.

The next important point is that there is a gap between ¢, the smallest positive number,
and 0.0. A round-off error in a calculation that should produce a small non-zero value but
instead results in 0.0 is called an underflow. One of the strengths of the IEEE standard

is that it allows a special denormalized form for very small numbers in order to stave off

underflows as long as possible. This is why the exponent in the largest and smallest positive
numbers are not symmetrical. Without denormalized numbers, the smallest positive number
in the IEEE standard would be around 107,

Finally, and perhaps most important, is the fact that the numbers that can be represented
are not distributed evenly throughout the range. Representable numbers are very dense
close to 0.0, but then grow steadily further apart as they increase in magnitude. The dark
regions in Figure 2 correspond to parts of the number line where representable numbers
are packed close together. It is easy to see why the distribution is not even by asking
what two numbers are represented by two successive values of the mantissa for any given
exponent. To make the calculations easier, suppose we have a 16-bit system with a 7-
bit mantissa and 8-bit exponent. No matter what the exponent is, the distance between
any two successive values of the mantissa, e.g. between 0.1110000, and 0.1110001,, will
be 0.0000001, ~ 0.0078;5. For numbers closest to 0.0, the exponent will be a negative
number, e.g. —100, and the distance between two successive floating point numbers will be
0.0000001, x 2! ~ 0.0078 x 1072 = 7.8 x 1073*. At the other end of the scale, when
exponents are large, the distance between two numbers will be approximately 2'°°, namely

0.0000001; x 2% 2 0.0078 x 10 = 7.8 x 10%".

2.7 Performance Models

The most widely recognized aspect of a machine’s internal organization that relates to per-
formance is the clock cycle time, which controls the rate of internal operations in the CPU
(Section 2.1). A shorter clock cycle time, or equivalently a larger number of cycles per
second, implies more operations can be performed per unit time.

For a given architecture, it is often possible to rank systems according to their clock
rates. For example, the HP 9000/725 and 9000/735 workstations have basically the same
architecture, meaning they have the same instruction set and, in general, appear to be the
same system as far as compiler writers are concerned. The 725 has a 66MHz clock, while the
735 has a 99MHz clock, and indeed the 735 has a higher performance on most programs.

There are several reasons why simply comparing clock cycle times is an inadequate mea-
sure of performance. One reason is that processors don’t operate “in a vacuum”, but rely on
memories and buses to supply information. The size and access times of the memories and
the bandwidth of the bus all play a major role in performance. It is very easy to imagine
a program that requires a large amount of memory running faster on an HP 725 that has

0.0

Figure 2: Distribution of Floating Point Numbers

As the above example illustrates, computers transform the numbers so the mantissa is
a manageable number. Just as 6.022 x 10% is preferred to 60.22 x 10?2 or 0.6022 x 10** in
scientific notation, in binary the mantissa should be between 1.000- -+ and 1.111---. When
the mantissa is in this range it is said to be normalized. The definition of the normal
form varies from system to system, e.g. in some systems a normalized mantissa is between
0.1000--- and 0.1111---.

Since we need to represent both positive and negative real numbers, the complete rep-
resentation for a real number in a floating point format has three fields: a one-bit sign, a
fixed number of bits for the mantissa, and the remainder of the bits for the exponent. Note
that the exponent is an integer, and that this integer can be either positive or negative,
e.g. we will want to represent very small numbers such as 4.1 x 107"*. Any method such
as two's complement that can represent both positive and negative integers can be used
within the exponent field. The sign bit at the {ront of the number determines the sign of the
entire number, which is independent of the sign of the exponent, e.g. it indicates whether
the number is 4.1 x 107! or —4.1 x 10715,

In the past every computer manufacturer used their own floating point representation,
which made it a nightmare to move programs and datasets from one system to another.
A recent IEEE standard is now being widely adopted and will add stability to this area of
computer architecture. For 32-bit systems, the standard calls for a 1-bit sign, 8-bit exponent,
and 23-bit mantissa. The largest number that can be represented is 2'%¢ ~ 10*%, and the
smallest positive number (closest to 0.0) is 27" ~ 107", Details of the standard are
presented in an appendix to this chapter.

Figure 2 illustrates the numbers that can be stored in a typical computer system with
a floating point representation. The figure shows three disjoint regions: positive numbers

< w, 0.0, and negative numbers —w < n < —c. w is the largest number that can be stored
in the system; in the IEEE standard representation w = 10*. ¢ is the smallest positive
number, which is 107*7 in the IEEE standard.

Programmers need to be aware of several important attributes of the floating point repre-
sentation that are illustrated by this figure. The first is the magnitude of the range between
—w and w . There are about 10* integers in this range. However there are only 2** = 10°
different 32-bit patterns. What this means is there are numbers in the range that do not have
representations. Whenever a calculation results in one of these numbers, a round-off error
will occur when the system approximates the result by the nearest (we hope) representable

Machine A Machine B
L: load X,V[i] %) L: load X,V[i])
mpy 3, X (4) mov X,Y (@)
store X, V[i] @] shl X,1 %)
dbrLi 2 add Y,X %)
store X, V[i] @
dor L,i @
total cycles: 10 total cycles: 12

Table 1:

a larger cache and more main memory than a 735. We will return to the topic of memory
organization and processor- memory interconnection in later sections on vector processors
and parallel processors since these two aspects of systems organization are even more crucial

for high performance in those systems.

A second reason clock rate by itself is an inadequate measure of performance is that it
doesn’t take into account what happens during a clock cycle. This is especially true when
comparing systems with different instruction sets. It is possible that a machine might have
a lower clock rate, but because it requires fewer cycles to execute the same program it would
have higher performance. For example, consider two machines, A and B, that are almost
identical except that A has a multiply instruction and B does not. A simple loop that
multiplies a vector by a scalar (the constant 3 in this example) is shown in the table below.
The number of cycles for each instruction is given in parentheses next to the instruction.
The first instruction loads an element of the vector into an internal processor register X. Next,
machine A multiplies the vector element by 3, leaving the result in the register. Machine B
does the same operation by shifting and adding, i.e. 3z = 2z 4+ z. B copies the contents of X
to another register Y, shifts X left one bit (which multiplies it by 2), and then adds Y, again
leaving the result in X. Both machines then store the result back into the vector in memory
and branch back to the top of the loop if the vector index is not at the end of the vector
(the comparison and branch are done by the dbr instruction). Machine A might be slightly
slower than B, but since it takes fewer cycles it will execute the loop faster. For example if
’s cycle time is 9 MHz (.11us per cycle) and B’s cycle time is 10 MHz (.10us per cycle) A
will execute one pass through the loop in 1.1ps but B will require 1.2ps.

Basic Computer Architecture 21

As a historical note, microprocessor and microcomputer designers in the 1970s tended
to build systems with instruction sets like those of machine A above. The goal was to
include instructions with a large “semantic content,” e.g. multiplication is relatively more
complex than loading a value {rom memory or shifting a bit pattern. The payofl was in
reducing the overhead to fetch instructions, since fewer instructions could accomplish the
same job. By the 1980s, however, it became widely accepted that instruction sets such as
those of machine B were in fact a better match for VLSI chip technology. The move toward
simpler instructions became known as RISC, for Reduced Instruction Set Computer. A
RISC has fewer instructions in its repertoire, but more importantly each instruction is very
simple. The fact that operations are so simple and so uniform leads to some very powerful
implementation techniques, such as pipelining, and opens up room on the processor chip
for items such as on-chip caches or multiple functional units, e.g. a CPU that has two or
more arithmetic units. We will discuss these types of systems in more detail later, in the
section on superscalar designs (Section 3.5.2). Another benefit to simple instructions is that
cycle times can also be much shorter; instead of being only moderately faster, e.g 10MHz
vs. 9MHz as in the example above, cycle times on RISC machines are often much faster,
so even though they fetch and execute more instructions they typically outperform complex
instruction set (CISC) machines designed at the same time.

In order to compare performance of two machines with different instruction sets, and even
different styles of instruction sets (e.g. RISC vs. CISC), we can break the total execution
time into constituent parts [11]. The total time to execute any given program is the product
of the number of machine cycles required to execute the program and the processor cycle
time:

T=n.xl.
The number of cycles executed can be rewritten as the number of instructions executed times
the average number of cycles per instruction:

ne
T =n; x — xt.
n;

The middle factor in this expression describes the average number of machine cycles the
processor devotes to each instruction. It is the number of cycles per instruction, or CPL
The basic performance model for a single processor compute tem is thus

T =n; x CPI x ¢,

where
ne
CPI=—
n;
The three factors each describe different attributes of the execution of a program. The
number of instructions depends on the algorithm, the compiler, and to some extent the in-
struction set of the machine. Total execution time can be reduced by lowering the instruction

Basic Computer Architecture 23
Fetch instruction 1 2 3 n
Fetch operands 1 2 n
Execute instruction 1 n
Time —_—

A processor can overlap the execution of several instructions. In this
example the first instruction is fetched during the first cycle. In the sec-
ond cycle, instruction 1 is handed to the part of the processor that pre-
pares operands and the second instruction is fetched from memory. In
cycles 3 through n the processor is working on three instructions at a
time. Note also that one instruction is completed every cycle. n+ 2 cy-
cles are required to execute n instructions, so the average number of
cycles per instructionis CPl = ((n+2)/n) =1.0.

Figure 3: Pipelined execution

a measure of performance normalized to VAX 11/780 performance. What this means is
someone ran a program on the VAX, then ran the same program on the other system, and
the ratio is X. The term “native MIPS” refers to the number of millions of instructions of
the machine’s own instruction set that can be executed per second.

MFLOPS (pronounced “megaflops”) stands for “millions of floating point operations
per second.” This is often used as a “bottom-line” figure. If you know ahead of time how
many operations a program needs to perform, you can divide the number of operations
by the execution time to come up with a MFLOPS rating. For example, the standard
algorithm for multiplying n x n matrices requires 2n* — n operations (n? inner products,
with n multiplications and n — 1 additions in each product). Suppose you compute the
product of two 100 x 100 matrices in 0.35 seconds. Your computer achieved

(2(100)* — 100)/0.35 = 5,714,000 ops/sec = 5.714 MFLOPS

Obviously this type of comparison ignores the overhead involved in setting up loops, checking
terminating conditions, and so on, but as a “bottom line” it gets to the point: what you care
about (in this example) is how long it takes to multiply two matrices, and if that operation is
a major component of your research it makes sense to compare machines by how fast they can
multiply matrices. A standard set of reference programs known as LINPACK (linear algebra
package) is often used to compare systems based on their MFLOPS ratings by measuring
execution times for Gaussian elimination on 100 x 100 matrices [8].

The term “theoretical peak MFLOPS” refers to how many operations per second would be

™
[N

count, either through a better algorithm (one that executes an inner loop fewer times, for
example), a better compiler (one that generates fewer instructions for the body of the loop),
or perhaps by changing the instruction set so it requires fewer instructions to encode the
same algorithm. As we saw earlier, however, a more compact encoding as a result of a richer
instruction set does not always speed up a program since complex instructions require more
cycles. The interaction between instruction complexity and the number of cycles to execute
a program is very involved, and it is hard to predict ahead of time whether adding a new
instruction will really improve performance.

The second factor in the performance model is CPI. At first it would seem this factor is
simply a measure of the complexity of the instruction set: simple instructions require fewer
cycles, so RISC machines should have lower CPI values. That view is misleading, however,
since it concerns a static quantity. The performance equation describes the average number of
cycles per instruction measured during the execution of a program. The difference is crucial.
Implementation techniques such as pipelining allow a processor to overlap instructions by
working on several instructions at one time. These techniques will lower CPI and improve
performance since more instructions are executed in any given time period. For example,
the average instruction in a system might require three machine cycles: one to fetch it
from cache, one to fetch its operands {rom registers, and one to perform the operation and
store the result in a register. Based on this static description one might conclude the CPI
is 3.0, since each instruction requires three cycles. However, if the processor can juggle
three instructions at once, for example by fetching instruction i + 2 while it is locating the
operands for instruction i + 1 and executing instruction ¢, then the effective CPI observed
during the execution of the program is just a little over 1.0 (Figure 3). Note that this is
another illustration of the difference between speed and bandwidth. Overall performance of
a system can be improved by increasing bandwidth, in this case by increasing the number of
instructions that flow through the processor per unit time, without changing the execution
time of the individual instructions.

The third factor in the performance model is the processor cycle time ¢.. This is usually
in the realm of computer engineering: a better layout of the components on the surface
of the chip might shorten wire lengths and allow for a faster clock, or a different material
(e.g. gallium arsenide vs. silicon based semiconductors) might have a faster switching time.
However, the architecture can also affect cycle time. One of the reasons RISC is such a good
fit. for current VLSI technology is that if the instruction set is small, it requires less logic
to implement. Less logic means less space on the chip, and smaller circuits run faster and
consume less power [12]. Thus the design of the instruction set, the organization of pipelines,
and other attributes of the architecture and its implementation can impact cycle time.

We conclude this section with a few remarks on some metrics that are commonly used to
describe the performance of computer systems. MIPS stands for “millions of instructions
per second.” With the variation in instruction styles, internal organization, and number of
processors per system it is almost meaningless for comparing two systems. As a point of
reference, the DEC VAX 11/780 executed approximately one million instructions per second.
You may see a system described as having performance rated at “X VAX MIPS.” This is

24

possible if the machine did nothing but numerical operations. It is obtained by calculating the
time it takes to perform one operation and then computing how many of them could be done
in one second. For example, if it takes 8 cycles to do one floating point multiplication, the
cycle time on the machine is 20 nanoseconds, and arithmetic operations are not overlapped
with one another, it takes 160ns for one multiplication, and

1,000,000,000 nanosec 1 multiplication
1 second 160 nanosec

=6.25 x 10° multiplication/sec

so the theoretical peak performance is 6.25 MFLOPS. Of course, programs are not just long
sequences of multiply and add instructions, so a machine rarely comes close to this level of
performance on any real program. Most machines will achieve less than 10% of their peak
rating, but vector processors or other machines with internal pipelines that have an effective
CPI near 1.0 can often achieve 70% or more of their theoretical peak on small programs.

Using metrics such as CPI, MIPS, or MFLOPS to compare machines depends heavily
on the programs used to measure execution times. A benchmark is a program written
specifically for this purpose. There are several well-known collections of benchmarks. One
that is be particularly interesting to computational scientists is LINPACK, which contains
a set of linear algebra routines written in Fortran. MFLOPS ratings based on LINPACK
performance are published regularly [8]. Two collections of a wider range of programs are
SPEC (System Performance Evaluation Cooperative) and the Perfect Club, which is oriented
toward parallel processing. Both include widely used programs such as a C compiler and
a text formatter, not just small special purpose subroutines, and are useful for comparing
systems such as high performance workstations that will be used for other jobs in addition
to computational science modelling,.

3 High Performance Computer Architecture

As described in Section 3.6 the performance of a computer system is defined by three factors.
The time to execute a program is a function of the number of instructions to execute, the
average number of clock cycles required per instruction, and the clock cycle time:

T =n; x CPI x .

Lowering the clock cycle time is mostly a matter of engineering, through the use of more
advanced materials or production techniques that allow the construction of smaller (and
thus faster and more efficient) circuits. In this section we will survey several techniques for
designing architectures that improve the other two factors.

The common thread that runs through all these techniques is parallelism, which is
achieved by replicating basic components in the system. For example, an architect may
use four adder/multiplier units instead of one inside the CPU, or connect two or more mem-
ories to the CPU in order to increase bandwidth, or connect two or more processors to one
memory in order to increase the number of instructions executed per unit time, or even

Lo
St

High Performance Computer Architecture

replicate the entire computer (processor, memory, and I/O connections) in a network of
machines that all work together on the same program. Parallelism has existed in the minds
of computer architects from the time of Charles Babbage in the early 19th century, and has
been manifested in a large number of machines in a variety of ways that might be classified
in distinct levels [13]:

o Job level parallelism, the highest level of parallelism, is more of interest to administra-
tors than individual users. What is most important from this point of view is that a
lab or computer center execute as many jobs as possible in any given time period. This
can be accomplished by purchasing more computer systems so more jobs are running
at any one time, even though any one user’s job will not run faster. Once again we see
a distinction between throughput (number of jobs per day) and latency (the time to
execute a program).

Program level parallelism occurs when a single program is broken down into constituent
parts. For example, the matrix product can be computed by breaking C into quadrants
and having four processors compute each quadrant from the corresponding sections of
A and B (also refer to the Chapter on Numerical Algebra). The entire product will
be computed roughly four times faster since each processor can work independently of
the others.

Instruction level parallelism is mostly invisible to users, i.e. it is below the level of
the architecture and in the domain of computer organization. Pipelines, introduced
briefly in Section 3.6 and discussed in more detail below, are the most common way of
implementing this type of parallelism.

Arithmetic and bit level parallelism is the lowest level and is mainly of concern to
designers of arithmetic-logic units inside the CPU. For example, a 64-bit sum can be
computed by adding all 64 bits at once (the carry into the most significant bits can
be predicted and computed almost as fast as the sum of any two bits), or for some
reason the architect may decide to break the operation into 4-bit pieces and compute
the entire sum in 16 cycles.

Job level parallelism is also exploited within a single computer by treating a job or several
jobs as a collection of independent tasks. For example, several jobs may reside in memory at
the same time with only one in execution at any given time. When that job requires some
1/0 services, such as a read from disc, the operation is initiated, the job requiring the service
is suspended, and another job is put into execution state. At some future time, after the I/O
operation has completed and the data is available, control will pass back to the original job
and execution will continue. In this example, the CPU and the 1/O system are functioning
in parallel.

Parallelism at the program level is generally manifested in two ways: independent sections
of a given program, and individual iterations of a loop where there are no dependencies
between iterations. This type of parallelism may be exploited by multiple processors or

o
=1

High Performance Computer Architecture

5

hand such processors are very expensive to build, power and cool. Some architects have
used commodity microprocessors which offer great economies of scale at the expense of more
complex interconnection strategies. With the rapid increase in the power of microprocessors,
arrays of a few hundred processors have the same theoretical peak performance of the fastest
machines offered by Cray Research Inc.

This section of the book explores the design space of high performance machines, in-
cluding single processor vector machines, parallel systems with a few powerful processors,
and massively parallel architectures. Section 3.1 introduces a popular taxonomy of paral-
lel systems. The next three sections cover major concepts of parallel systems organization,
including pipelining, schemes for interconnecting processors and memories, and scalability.
Section 3.5 is a survey of the major types of parallel machines, with an emphasis on sys-
tems that have been used in computational science. Finally, Section 3.6 present models for
analyzing the performance of parallel computer systems.

3.1 Flynn’s Taxonomy

It is safe to say that as of this writing there is no completely satisfactory characterization of
the different types of parallel systems. The most popular taxonomy was defined by Flynn
in 1966 [9]. The classification is based on the notion of a stream of information. Two types
of information flow into a processor: instructions and data. Conceptually these can be sep-
arated into two independent streams, whether or not the information actually arrives on a
different set of wires.” Flynn’s taxonomy classifies machines according to whether they have
one stream or more than one stream of each type (Figure 4). The four combinations are
SISD (single instruction stream, single data stream), SIMD (single instruction stream, mul-
tiple data streams), MISD (multiple instruction streams, single data stream), and MIMD
(multiple instruction streams, multiple data streams).

3.1.1 SISD Computers

Conventional single processor computers are classified as SISD systems. Each arithmetic
instruction initiates an operation on a data item taken from a single stream of data elements.
Historical supercomputers such as the Control Data Corporation 6600 and 7600 fit this
category as do most contemporary microprocessors.

Vector processors such as the Cray-1 and its descendants are often classified as SIMD
machines, although they are more properly regarded as SISD machines. Vector processors
achieve their high performance by passing successive elements of vectors through separate
pieces of hardware dedicated to independent phases of a complex operation. For example,
in order to add two numbers such as 3.4 x 2% and 1.6 x 22, the numbers must have the
same exponent. The processor must shift the mantissa (and decrement the exponent) of
one number until its exponent matches the exponent of the other number. In this example

5A processor is said to have a “Harvard architecture” if it has two separate memory channels, one for
instructions and one for data.

26

multiple functional units. For example, the following code segment calls for the calculation
of n sums:

DO 10 I=1,N
A(I) = B(I) + C ()
10 CONTINUE

The sums are independent, i.e. the calculation of b; + ¢; does not depend on b; + ¢; for any
j < i. That means they can be done in any order, and in particular a machine with n
processors could do them all at the same time.

Obviously, more complex segments may also be treated in parallel depending on the
sophistication of the architecture. This is the level of parallelism with which we will primarily
be concerned in this book.

The next lower level of parallelism is at the instruction level, where individual instruc-
tions may be overlapped or a given instruction may be decomposed into suboperations with
the suboperations overlapped. In the first case, for example, it is common to find a load
instruction, which copies a value from memory to an internal CPU register, overlapped with
an arithmetic instruction. The second situation is exemplified by the ubiquitous pipeline
that has become the mainstay for arithmetic processing. In general, programmers need not
concern themselves with this level of parallelism, since compilers are adept at reorganizing
programs to exploit this form of parallelism. Nevertheless, one should keep in mind that
the quality of compilers varies greatly from system to system and one may have to structure
the code in particular ways to help the compiler make maximum use of the hardware. For
example, as we will see below, Cray supercomputers are most efficient when vector lengths
are 64 or smaller, and rearranging programs to operate on small segments of long vectors
can improve performance. In addition, awareness of the internal structure of a computer is
often necessary when analyzing the performance of a program.

A concept related to the level of parallelism is the granularity of parallel tasks. A large
grain system is one in which the operations that run in parallel are fairly large, on the order
of entire programs. Small grain parallel systems divide programs into very small pieces, in
some cases only a few instructions. The example used above of a processor that calculates
n sums in parallel is an example of very fine grain parallelism.

When designing a machine the architect must make a decision to use a relatively small
number of powerful processors or a large number of simple processors to achieve the de-
sired performance. The latter approach is often termed massively parallel.® At one extreme
are the systems built by Cray Research Inc. that consist of two to sixteen very power-
ful vector processors; at the other extreme are arrays of tens of thousands of very simple
processors, exemplified by the CM-1 from Thinking Machines Corporation, which has up
to 65,536 single-bit processors. The motivation for a small number of powerful processors
is that they are simpler to interconnect and they lend themselves to an implementation
of memory organizations that make the systems relatively easy to program. On the other

“What constitutes “massive” parallelism is not clearly defined. Most authors reserve the term for systems
with 1000 or more individual processors.

3.4 x 2% is adjusted to 6.8 x 2% so it can be added to 1.6 x 2%, and the sum is 8.4 x 22, A
vector processor is specially constructed to feed a data stream into the processor at a high
rate, so that as one part of the processor is adding the mantissas in the pair (a;, b;) another
part of the processor is adjusting the exponents in (a;y1, biy1)-

The ambiguity over the classification of vector machines depends on how one views the
flow of data. A static “snapshot” of the processor during the processing of a vector would
show several pieces of data being operated on at one time, and under this view one could
say one instruction (a vector add) initiates several data operations (adjust exponents, add
mantissas, etc.) and the machine might be classified SIMD. A more dynamic view shows
that there is just one stream of data, and elements of this stream are passed sequentially
through a single pipeline (which implements addition in this example). Another argument
for not including vector machines in the SIMD category will be presented when we see how
SIMD machines implement vector addition.

3.1.2 SIMD Computers

SIMD machines have one instruction processing unit, sometimes called a controller and
indicated by a K in the PMS notation, and several data processing units, generally called
D-units or processing elements (PEs). The first operational machine of this class was the
ILLIAC-1V, a joint project by DARPA, Burroughs Corporation, and the University of Illinois
Institute for Advanced Computation [5]. Later machines included the Distributed Array
Processor (DAP) from the British corporation ICL, and the Goodyear MPP. Two recent
machines, the Thinking Machines CM-1 and the MasPar MP-1, are discussed in detail in
Section 3.1.2

The control unit is responsible for fetching and interpreting instructions. When it en-
counters an arithmetic or other data processing instruction, it broadcasts the instruction to
all PEs, which then all perform the same operation. For example, the instruction might be *
add R3,R0.” Each PE would add the contents of its own internal register R3 to its own R0.
To allow for needed flexibility in implementing algorithms, a PE can be deactivated. Thus
on each instruction, a PE is either idle, in which case it does nothing, or it is active, in which
case it performs the same operation as all other active PEs. Each PE has its own memory
for storing data. A memory reference instruction, for example “load R0,100” directs each
PE to load its internal register with the contents of memory location 100, meaning the 100th
cell in its own local memory.

One of the advantages of this style of parallel machine organization is a savings in the
amount of logic. Anywhere from 20% to 50% of the logic on a typical processor chip is
devoted to control, namely to fetching, decoding, and scheduling instructions. The remainder
is used for on-chip storage (registers and cache) and the logic required to implement the data
processing (adders, multipliers, etc.). In an SIMD machine, only one control unit fetches and
processes instructions, so more logic can be dedicated to arithmetic circuits and registers.
For example, 32 PEs fit on one chip in the MasPar MP-1, and a 1024- processor system is
built from 32 chips, all of which fit on a single board (the control unit occupies a separate

High Performance Computer Architecture 29

Single Multiple
Data Stream Data Streams
. P M
Single / d
Instruction P M Mi—K=—P My
Stream
P My
+ SISD: asingle processor + SIMD: one instruction proces-
fetches instructions and per- sor (K) fetches instructions,
forms all data pr
operations. elements(P). Typically each PE
has its own data memory M.
M M M
d AN z
. M; —P P P
Multiple
Instruction M; —P
Streams . P N
M; —P M M
+MISD: asingle datastream s * MIMD: pre indepen-
operated on by several pro- dently fetch instructions and
cessors, each with an instruc- operate on data. Processors
tion stream from its own communicate directly (as
instruction memory M;. shown) or through shared mem-
ory (seetext).

Figure 4: Flynn’s Taxonomy

High Performance Computer Architecture 31

processor in the execution of a single program, has been an active area in corporate and aca-
demic research labs since the early 1970s. The c.mmp and cm™ projects at Carnegie Mellon
University used DEC PDP-11 microcomputers as processing elements and pioneered several
important developments in parallel hardware and software. Commercial parallel processors
started to become widely used in the mid 1980s. By the early 1990s these systems began
to approach top of the line vector processors in computing power, and the trend for future
high performance computing is clearly with parallel processing.

3.1.5 Other Taxonomies

In addition to the vacuous MISD category and the difficulty in classifying vector processors,
there are other weaknesses of the Flynn taxonomy. In the MIMD category, all arrays of
processors are lumped together regardless of how they are connected and how they view
memory. Since these characteristics can have a dramatic effect on performance, it would
be desirable if the taxonomy reflected those differences. Shore (@Shore) offered a very
similar taxonomy, but expanded the SIMD category to four subcategories. He still did not
distinguish the pipelined vector computer and he also did not provide for the completely
independent array in the MIMD category. There have been other attempts to modify the
Flynn taxonomy. For example in Hwang [14] the MIMD category is subdivided into shared
memory systems, distributed memory systems and reconfigurable systems. Unfortunately,
this mixes memory organization with communication organization, and although it is a
useful distinction it is not very satisfactory as a basis for a taxonomy. Bell [3] divided
the MIMD category into systems with shared memory and those without shared memory.
One addition to the Flynn taxonomy that has become very popular is SPMD, which stands
for Single Program / Multiple Data stream (see for example Karp [17]). In some sense it
represents a style of computing rather than an architecture. Physically the system is an
MIMD multiprocessor because there are several independent processors, each with its own
data set and program memory. However, the same program is executed by each processor,
and the processors are synchronized periodically. This is a much simpler way to approach an
MIMD system than to have to manage many individual instruction streams. It also provides

more flexibility than the SIMD system because different processors may be at different parts
of the program at any time. By far the most ambitious attempt at a taxonomy is given by
Hockney and Jesshope [13] where the motivation was to treat pipelined vector processors as
a distinct architecture and to differentiate among the many multiprocessor possibilities. The
notation resembles chemical notation for organic compounds and its complexity is beyond the
scope of this discussion, but it does lead to a classification that provides a unique identifier for
all of the systems that have been proposed or manufactured. However, that same complexity
is the probable explanation for the lack of acceptance of the taxonomy.

3.2 Pipelines

A common analogy for a pipeline is the assembly line used in manufacturing. The end goal
is to increase productivity — the number of instructions executed per second or the number

30

board).

Vector processing is performed on an SIMD machine by distributing elements of vectors
across all data memories. For example, suppose we have two vectors, a and b, and a machine
with 1024 PEs. We would store a; in location 0 of memory i and b; in location 1 of memory
i. To add a and b, the machine would tell each PE to load the contents of location 0 into
one register, the contents of location 1 into another register, add the two registers, and write
the result. As long as the number of PEs is greater than the length of the vectors, vector
processing on an SIMD machine is done in constant time, i.e. it does not depend on the
length of the vectors. Vector operations on a pipelined SISD vector processor, however, take
time that is a linear function of the length of the vectors.

3.1.3 MISD Computers

There are few machines in this category, none that have been commercially successful or
had any impact on computational science. One type of system that fits the description
of an MISD computer is a systolic array, which is a network of small computing elements
connected in a regular grid. All the elements are controlled by a global clock. On each cycle,
an element will read a piece of data from one of its neighbors, perform a simple operation
(e.g. add the incoming element to a stored value), and prepare a value to be written to a
neighbor on the next step.

One could make a case for pipelined vector processors fitting in this category, as well,
since each step of the pipeline corresponds to a different operation being performed to the
data as it flows past that stage in the pipe. There have been pipelined processors with
programmable stages, i.e. the function that is applied at each location in the pipeline could
vary, although the pipeline stage did not fetch its operation {rom a local control memory so
it would be difficult to classify it as a “processor.”

3.1.4 MIMD Computers

The category of MIMD machines is the most diverse of the four classifications in Flynn’s
taxonomy. It includes machines with processors and memory units specifically designed to
be components of a parallel architecture, large scale parallel machines built from “off the
shelf” microprocessors, small scale multiprocessors made by connecting four vector processors
together, and a wide variety of other designs. With the continued improvement in network
communication and the development of software packages that allow programs running on
one machine to communicate with programs on other machines, users are even starting to
use local networks of workstations as MIMD systems.

Computer systems with two or more independent processors have been available commer-
cially for a long time. For example, the Burroughs Corporation sold dual processor versions
of its B6700 systems in the 1970s. These were rarely, if ever, used to work on the same job,
however. Multiprocessors of this era were intended to be used for job level parallelism, i.e.
cach would run a separate program. Parallel processing, in the sense of using more than one

of cars built per day — by dividing a complex operation into pieces that can be performed in
parallel. Separate “workers” implement successive steps along the assembly line, and when
an item finishes one step it is passed down the line to next step.

Pipelines are used in two major areas in computer design: instruction processing and
arithmetic operations. The following requirements must be satisfied in a pipelined system:

A system is a candidate for pipelined implementation if it repeatedly executes a basic
function.

A basic function must be divisible into independent stages that have minimal overlap.

The complexity of the stages should be roughly similar.

The number of stages is referred to as the depth of the pipeline. As an example of a pipeline,
consider the floating point addition of two numbers of the form m x 2°. One possible
breakdown of this function into stages is as follows [33]:

1. If e; < ¢; swap the operands. Find the difference in exponents ¢4 = ¢; — €.

o

. Shift m2 to the right by eq bits.

w

. Compute the mantissa of the sum by adding m; and m;. The exponent of the sum is

€.
4. Normalize the sum.

The extra complexity of a pipelined adder pays off when adding long sequences of numbers.
Operations at each stage can be done on different pairs of inputs, e.g. one stage can be
comparing the exponents in one pair of operands at the same time another stage is adding
the mantissas of a different pair of operands.

A very important requirement for overlapping operations this way is that there be no
resource conflicts, i.e. the operands must be independent. For example, suppose a program
contains the two instructions

R2 = RO + R1
R4 = R3 + R1

Note that both instructions identify R1 as one of their inputs. There is a potential conflict in
stages two and three of the adder pipeline because stage two might need to shift the mantissa
of R1 at the same time stage three needs to add the mantissa of RO to the mantissa of R1.
The solution is to make copies of the operands, and pass the copies through the pipeline.
Thus the CPU gives the adder copies of RO and R1 when it starts the pipeline for the first
pair, and the second stage gets these copies from the first stage along with a value of ¢4.
There is another potential problem illustrated by this example. Suppose the second
instruction is changed so one of its operands is R2, so the pair of instructions is:

High Performance Computer Architecture 33

R2 = RO + R1
R4 = R2 + R1

Now the second instruction depends on the result of the first instruction. The CPU
cannot send the second pair of operands to the pipelined adder until the result of the first
addition exits the last stage of the pipeline. Interactions such as these lead to periods when
pipeline stages are empty. These empty time slots are often called bubbles.

Figure 5 shows a type of diagram, known as a Gantt chart, that is commonly used to
illustrate the operation of a pipeline. The horizontal axis represents time. There is one row
for each stage of the pipeline. A line segment during cycle #; means a stage is active in
that cycle; a blank means the stage is inactive. The figure illustrates the pipelined floating
point adder of the previous example in the case when two successive instructions can be
overlapped and in the case where the second instruction must wait for the first to complete.
In the case of overlapped instructions, note that in cycle ¢; the first stage is busy with the
second instruction while the second stage is busy with the first instruction. In each successive
cycle the two instructions are passed down the “assembly line” to the next stage. In the first
case, the second sum is done after 6 cycles, but in the second case it is not finished until
after the 10th cycle. The “bubble” in the pipeline is the 4-cycle dead period in each stage
caused by delaying the second instruction.

It should be apparent that in the general case a pipeline of depth d can process n items
in n + d steps when there are no bubbles. Without a pipeline, each application of the basic
function would require d cycles, and they would have to be executed sequentially, for a total
time of n - d cycles. The speedup obtained by a full pipeline is thus

n-d
n+d

When n > d we can safely ignore the d in the denominator, so the asymptotic speedup,
observed for large n, is a factor of d. For example, suppose we want to add 1000 pairs of
numbers, e.g. when adding two 1000-element vectors. If it takes 5 cycles for each addition,
a machine without a pipelined adder would require 5000 cycles. With our 5-stage pipelined
adder, the last sum will appear after 1000 + 5 cycles, so the pipeline is 5000/1005 = 4.97
times faster. Providing a steady stream of independent operands that will keep a pipeline
full is the distinguishing feature of a vector processor, which can initiate such a series of
operations with a single instruction.

There are many possible sources of bubbles in pipelines. Dependencies between instruc-
tions are the main cause. For arithmetic pipelines, data dependencies arise when pairs of
operations share inputs and outputs. Consider the following two add instructions:

z1 = xt + yi

22 = x2 + y2

The dependence illustrated previously is x2 = z1, e.g. both operands are the register R2.
Other dependencies are z1 = 22 (both instructions write to the same register) and x1 = z2

High Performance Computer Architecture 35

(the output from the second instruction may overwrite the register before the first has had
a chance to read the old value; an unlikely occurrence in a vector machine, but a situation
that must be taken into account). Note that the instructions do not have to be consecutive,
i.e. there could be intervening instructions. A compiler that checks for dependencies and
possibly reorders instructions has to “look ahead” in the code by an amount equal to the
depth of the pipeline used in the first instruction.

Instruction pipelines, used to speed up the fetch-decode-execute cycle, are also susceptible
to bubbles. The most common case here is caused by branch or loop instructions, which are
control dependencies. If the pipeline is “looking ahead” and fetching instructions it thinks
the machine will want to execute, but in fact the machine branches to another location, a
bubble is introduced while the fetch stage goes to get the instructions at the new location.

Pipelines have been widely used in high performance machines for many years. The
CDC 6600 is a classic example of a complex instruction pipeline, using a circuit known
as a “scoreboard” to detect data dependencies between instructions and instruction buffers
to implement pipelining in the fetch-decode logic. The Cray-1 was a very successful early
supercomputer in which every data processing unit was pipelined. Until the late 1980s
pipelining was one of the attributes that separated “mainframes” and supercomputers from
microprocessors, but with the advance of VLSI technology microprocessors now have room
on chip for complex control circuitry. Most now have pipelined data processing units and
complex instruction scheduling logic that rivals that of the CDC 6600, an early pipelined
processor known for its innovative instruction processing.

3.3 Memory Organizations

So far the discussion of high performance computing has concentrated on increasing the
amount of processing power in a system, either through parallelism, which secks to increase
the number of instructions that can be executed in a time period, or through pipelining,
which improves the instruction throughput. Another, equally important, aspect of high
performance computing is the organization of the memory system. No matter how fast
one makes the processing unit, if the memory cannot keep up and provide instructions and
data at a sufficient rate there will be no improvement in performance. The main problem
that needs to be overcome in matching memory response to processor speed is the memory
cycle time, defined in section 2.2 to be the time between two successive memory operations.
Processor cycle times are typically much shorter than memory cycle times. When a processor
initiates a memory transfer at time to, the memory will be “busy”™ until ¢y + ., where is the
memory cycle time. During this period no other device — /O controller, other processors,
or even the processor that makes the request — can use the memory since it will be busy
responding to the request.

Solutions to the memory access problem have led to a dichotomy in parallel systems. In
one type of system, known as a shared memory system, there is one large virtual memory,
and all processors have equal access to data and instructions in this memory. The other type
of system is a distributed memory, in which each processor has a local memory that is not

34

Stage « Case 1: two independent instructions,
(6] fully overlapped. The second sum is
) computed at the end of the 6th cycle.
(€]
(O]
(5)

| | | | | | |
Cycle tp t; ty tz3 tg tg
« Case 2: the second

Stage instruction must wait until
1 thefirst is done, introduc-
2 ing a4-cycle bubble.
(©)]
(O]
)

| | | | | | | | | | |
Cycle tg t; tp tg3 ty ts tg t; tg tg
Figure 5: Gantt Charts for Pipelined Floating Point Adder
36

accessible from any other processor.

The difference between shared or distributed memory is a difference in the structure of
virtual memory, i.e. the memory as seen from the perspective of a processor. Physically,
almost every memory system is partitioned into separate components that can be accessed
independently. What distinguishes a shared memory from a distributed memory is how the
memory subsystem interprets an address generated by a processor. As an example, suppose
a processor executes the instruction load RO, 1, which means “load register RO with the
contents of memory location 1" (denoted Mem[il). The question is, what does i mean? In
a shared memory system, i is a global address, and Mem[i] to one processor is the same
memory cell as Mem[i] to another processor. If both processors execute this instruction
at the same time they will both load the same information into their RO registers. In a
distributed memory system, 1 is a local address. If two processors both execute load R0O,1i
they may end up with different values in their RO registers since Mem[i] designates two
different memory cells, one in the local memory of each processor.

The distinction between shared memory and distributed memory is an important one for
programmers because it determines how different parts of a parallel program will communi-
cate. In a shared memory system it is only necessary to build a data structure in memory
and pass references to the data structure to parallel subroutines. For example, a matrix
multiplication routine that breaks matrices into quadrants only needs to pass the indices of
each quadrant to the parallel subroutines. A distributed memory machine on the other hand
must create copies of shared data in each local memory. These copies are created by sending
a message containing the data to another processor. In the matrix multiplication example,
the controlling process would have to send messages to three other processors. Each message
would contain the submatrices required to compute one quadrant of the result. A drawback
to this memory organization is that these messages might have to be quite large; in this
example, half of each input matrix needs to be sent to each parallel subroutine.

In this section we will explore the range of techniques used to connect processors to
memories in high performance computers and how these techniques affect programmers.
The first section is on interleaved memory, a method long used in vector processors to
provide successive vector elements at a rate that matches the cycle time in the pipelined
data processing units. The next two sections deal with shared memory and distributed
memory organizations for parallel systems.

3.3.1 Interleaved Memory

In an interleaved memory, the memory is divided into a set of banks. An interleaved memory
with n banks is said to be n-way interleaved. One way of allocating virtual addresses to
memory modules is to divide the memory space (the set of all possible addresses a processor
can generate) into contiguous blocks. If there are n banks, memory location ¢ would reside
in bank number i/n (ignoring remainders). In an interleaved memory, however, consecutive
addresses reside in different banks: memory location i is in bank number i mod n. For
example, suppose there are 4 banks, each containing 256 bytes. The block-oriented scheme

High Performance Computer Architecture 37

Mg M M; Mg

P
addresses:
6]

B L]

(a) PMS diagram and memory layout (b) Elements fetched from an
(celli is in bank i mod 4). 8 x 8 array when the stride is 9.

Figure 6: Interleaved Memory

would assign virtual addresses 0...255 to the first bank, 256...511 to the second bank, and
so on. The interleaved scheme would assign addresses 0, 4, 8, ... to the first bank, 1, 5, 9,
... to the second bank, etc. (Figure 6).

However the memory space is split up among the banks, as long as requests are sent to
two different banks they can be handled simultaneously. The processor can request a transfer
from location 7 on one cycle, and on the next cycle request information from location j. If i
and j are in different banks, the information will be returned on successive cycles. Note that
the latency of the request, i.e. the number of cycles a processor has to wait before receiving
the contents of location ¢, is not affected. However the bandwidth is improved; if there are
enough banks the memory system can potentially send information at a rate of one word
per processor cycle, regardless of what the memory cycle time is.

The decision to allocate addresses as contiguous blocks or in interleaved fashion depends
on how one expects information to be accessed. Programs are compiled so instructions

reside in successive addresses, so there is a high probability that after a processor executes
the instruction at location i it will execute the instruction at i + 1(Section 2.2). Compilers
can also allocate vector elements to successive addresses, so operations on entire vectors can
take advantage of interleaving. For these reasons, vector processors universally have some
form of interleaved memory. However, shared memory multiprocessors use the block-oriented
scheme since memory referencing patterns in an MIMD system are quite different. There the
goal is to connect a processor to a single memory and use as much information as possible
from that memory before switching to another memory.

Systems often provide some flexibility in fetching vector elements. In some systems it is
possible to load every n'™ element, for example when fetching elements of a vector v that is

High Performance Computer Architecture 39

@ (b)

Pb Py P, Pg Mp M Mg M M Mp

(a) Four processors sharing a bus.

(b) Local caches reduce bus with cache
contention. 3

s
(c) Performance curve. Caches E
move the “knee” to the right, but 2 without cache
performance still levels off at g

around 30 processors.

1 1 1
10 20 30
#processors

Figure 7: Single Bus Microprocessor

38

stored in consecutive memory cells with n = 4the memory would return vg,v4 ,vs The interval
between elements is known as the stride. One interesting use of this feature is in accessing
matrices. I the stride is set to one more than the number of rows, a single memory request
will return the diagonal elements (assuming column major layout and the columns are stored
contiguously). Using a stride may cancel any benefits of interleaving if programmers are not
careful. In an extreme case, setting the stride to the degree of interleaving means every item
is fetched from the same bank and the time between successive elements will be the memory
cycle time.

3.3.2 Shared Memory

A straightforward way to connect several processors together to build a multiprocessor is
shown in Figure 7. The physical connections are quite simple. Most bus structures allow an
arbitrary (but not too large) number of devices to communicate over the bus. Bus protocols
were initially designed to allow a single processor and one or more disk or tape controllers
to communicate with memory. If the I/O controllers are replaced by processors, one has a
small single-bus multiprocessor.

The problem with this design is that processors must contend for access to the bus. If a
processor P; is fetching an instruction, all other processors P;j # ¢ must wait until the bus is
free. If there are only two processors they can perform close to their maximum rate since the
bus can alternate between them: as one processor is decoding and executing an instruction,
the other can be using the bus to fetch its next instruction. However, when a third processor
is added performance begins to degrade. Usually by the time 10 processors are connected
to the bus the performance curve has flattened out so that adding an 11th processor will
not increase performance at all. The bottom line is the fact that the memory and bus have
a fixed bandwidth, determined by a combination of the cycle time of the memory and the
bus protocol, and in a single-bus multiprocessor this bandwidth is divided among several
processors. If the processor cycle time is very slow compared to the memory cycle, a fairly
large number of processors can be accommodated by this plan, but in fact processor cycles
are usually much faster than memory cycles so this scheme is not widely used.

A slight modification to this design will improve performance, but it cannot indefinitely
postpone the flattening of the performance curve. If each processor has its own local cache,
there is a high probability (p > 0.9) that the instruction or data it wants is in the local cache.
A reasonable cache hit rate will greatly reduce the number of accesses a processor makes

and thus improve overall efficiency. The “knee” of the performance curve, which identifies a
point where it is still cost-effective to add processors, can now be around 20 processors, and
the curve will not flatten out until around 30 processors.

Giving each processor its own cache introduces a difficulty known as the cache coherency
problem. In its simplest form, the problem may be exemplified by the following scenario.
Suppose two processors use data item A, so A ends up in the cache of both processors. Next
suppose processor 1 performs a calculation that changes A. When it is done, the new value

40

S
P — — M1
Py — — My
P2 M;
- -
Pn-1 Mn.q
Modules

Figure 8: Shared Memory Multiprocessor with Discrete Memory Modules

of A is written out to main memory.® Processor 2 at a later time needs to fetch A. However,
since A was already in its cache, it will use the cached value and not the newly updated value
calculated by processor 1. Maintaining a consistent version of shared data requires providing
new versions of the cached data to each processor whenever one of the processors updates
its copy.

The multiprocessors produced by Sequent, Inc. are classic examples of machines of this
type. Their first machine, the Balance 8000, was intended to compete with the DEC V.
780, a popular minicomputer at that time. A 2-processor configuration gave slightly le:
performance than the VAX, but the next larger configuration, with four processors, was
faster. The operating system was a modified version of Unix. There was a single global task

queue, and each processor could fetch a task from the queue, execute it until it blocks or times
out, and return it to the queue. Thus the system implemented a form of job level parallelism.
Sequent also provided a library of procedures that allowed users to write parallel programs,
and the machine became a popular testbed for parallel languages and algorithms. The
current machines, in the Symmetry series, are widely used for on-line transaction processing.

Programming a shared memory machine is fairly straightforward. Programming con-
structs such as semaphores, fork-join, and monitors, which were developed for communi-
cation and synchronization of parallel processes in operating systems and other concurrent
programming applications, have been adapted for parallel processing. The implementation
of the basic synchronization primitives from which these constructs are built is more complex
in a parallel system, but this complexity is hidden from users. For example, the bus in the
Sequent Symmetry has provisions for implementing a pool of semaphores so that processes
are guaranteed to gain exclusive access to shared structures.

Another way of building a shared memory multiprocessor is shown in Figure 8. In these

SMost single-bus microprocessors use a design known as write-through cache in which values written to
memory are sent simultaneously to the cache and to the main memory.

High Performance Computer Architecture 11

designs, the bus has been replaced by a switch that routes requests from a processor to one
of several different memory modules. Even though there are several physical memories, there
is one large virtual address space. The advantage of this organization is based on the fact
the switch can handle multiple requests in parallel. Each processor can be paired up with
a memory, and each can then run at full speed as it accesses the memory it is currently
connected to. Contention still occurs, though. If two processors make requests of the same
memory module only one will be given access and the other will be blocked. Several machines
with this design will be discussed in the survey of MIMD machines following the section on
interconnection topology, which introduces concepts that will explain various switch designs.

3.3.3 Distributed Memory

In a distributed memory system the memory is associated with individual processors and a
processor is only able to address its own memory. Some authors refer to this type of system
as a multicomputer, reflecting the fact that the building blocks in the system are themselves
small computer systems complete with processor and memory.

There are several benefits of this organization. First, there is no bus or switch contention.
Each processor can utilize the full bandwidth to its own local memory without interference
from other processors. Second, the lack of a common bus means there is no inherent limit to
the number of processors; the size of the system is now constrained only by the network used
to connect processors to each other. Third, there are no cache coherency problems. Each
processor is in charge of its own data, and it does not have to worry about putting copies of
it in its own local cache and having another processor reference the original.

The major drawback in the distributed memory design is that interprocessor communi-
cation is more difficult. If a processor requires data from another processor’s memory, it
must exchange messages with the other processor. This introduces two sources of overhead:
it takes time to construct and send a message from one processor to another, and a receiving
processor must be interrupted in order to deal with messages from other processors.

Programming on a distributed memory machine is a matter of organizing a program
as a set of independent tasks that communicate with each other via messages. In addition,
programmers must be aware of where data is stored, which introduces the concept of locality
in parallel algorithm design. An algorithm that allows data to be partitioned into discrete
units and then runs with minimal communication between units will be more efficient than
an algorithm that requires random access to global structures.

Semaphores, monitors, and other concurrent programming techniques are not directly
applicable on distributed memory machines, but they can be implemented by a layered soft-
ware approach. User code can invoke a semaphore, for example, which is itself implemented
by passing a message to the node that “owns™ the semaphore. This approach is not very
efficient, however, and it has the drawback of nonuniform memory access, i.e. the latency
of a memory request, in this case reading the value of a semaphore, is proportional to the
distance between the processor making the request and the memory where the value is stored.

Which programming style is easier — shared memory with semaphores, etc. or dis-

High Performance Computer Architecture 43

Figure 10: Ring vs. Fully Connected Network

point data paths, i.e. not buses that are shared by several nodes. The properties discussed
here apply equally to MIMD and SIMD machines, or to shared memory or distributed
memory architectures. Examples of most of the topologies will be given in the survey of
high performance systems (Section 3.5).

Two nodes are neighbors if there is a link connecting them. The degree of a node is
defined to be the number of its neighbors. Figure 10 shows two common topologies, a ring
and a fully connected network, each with eight nodes. Each node in the ring is connected
to only two other nodes, while each node in the fully connected network is linked to every
other node. In practice the degree of a topology has an effect on cost, since the more links
a node has the more logic it takes to implement the connections.

When a node is not connected to every other node, messages may have to go through
intervening nodes to reach their final destination. The diameter of a network is the longest
path between any two nodes. Again the ring and fully connected network show two extremes.
A ring of n nodes has diameter n/2, but a fully connected network has a fixed diameter (1)
no matter how many nodes there are.

The diameter of a ring grows as more nodes are added, but the diameter of a fully con-
nected network remains the same. On the other hand, a ring can expand indefinitely without
changing the degree, but each time a new node is added to a fully connected network a link
has to be added to each existing node. Scalability refers to the increase in the complexity of
communication as more nodes are added. In a highly scalable topology more nodes can be
added without severely increasing the amount of logic required to implement the topology
and without increasing the diameter.

A scalable topology that has been used in several parallel processors is the hypercube,
shown in Figure 11. A line connecting two nodes defines a 1-dimensional “cube.” A square
with four nodes is a 2-dimensional cube, and a 3D cube has eight nodes. This pattern reveals
a rule for constructing an n-dimensional cube: begin with an (n —1)-dimensional cube, make

12
PEp PE;
PE =
PE; PE3
Figure 9: Distributed Memory Parallel Processor
tributed memory with message passing is often a matter of personal preference. The

message passing style fits very well with the object oriented programming methodology, and
if a program is already organized in terms of objects it may be quite easy to adapt it for a
distributed memory system. When faced with a decision of whether to implement a program
in shared memory or distributed memory the outcome is usually based on the amount of
information that must be shared by parallel tasks. Whatever information is shared among
tasks must be copied from one node to another via messages in a distributed memory s
tem, and this overhead may reduce efficiency to the point where a shared memory system is
preferred.

A PMS diagram of a simple distributed memory parallel processor is shown in Figure
9. On the left is the diagram of a single node, often called a processing element, or PE.
The organization of a PE explains how messages are passed from one PE to another. As far
as any one processor is concerned, the other processors are simply I/O devices. To send a
message to another PE, a processor copies information into a data block in its local memory
and then tells its local controller to transfer the information to an external device, much the

S

same way a disk controller in a microcomputer would write a block on a disk drive. In this
case, however, the block of data is transferred over the interconnection network to an I/O
controller in the receiving node. That controller finds room for the incoming message in its
local memory and then notifies the processor that a message has arrived.

3.4 Topology

A major consideration in the design of parallel systems is the set of pathways over which
the processors, memories, and switches communicate with each other. These connections
define the interconnection network, or topology, of the machine. Attributes of the topology
determine how processors will share data and at what cost.

The following discussion of the properties of interconnection networks is based on a
collection of nodes that communicate via links. In an actual system the nodes can be either
processors, memories, or switches. Unless otherwise noted the links will always be point-to-

44

4D
1D 2D 3D

0 1
0 o0 o°
1 11
O O
To construct an n-dimensional cube, copy an (n-1)-dimen-
sional cube, then connect corresponding nodes in the original

and the copy. In these figures nodes from the original are col-
ored gray.

Figure 11: Hypercubes

an identical copy, and add links from each node in the original to the corresponding node
in the copy. Doubling the number of nodes in a hypercube increases the degree by only 1
link per node, and likewise increases the diameter by only 1 path. It is left as an exercise to
prove that an n-dimensional hypercube has 2" nodes, diameter n, and degree n.

Communication in a hypercube is based on the binary representation of node IDs. The
nodes are numbered so that two nodes are adjacent if and only if the binary representations
of their IDs differ by one bit. For example, nodes 0110 and 0100 are immediate neighbors
but 0110 and 0101 are not. An easy way to label nodes is to assign node IDs as the cube
is constructed. When you copy an (n — 1)-dimensional cube, make sure the corresponding
nodes in the two copies have the same IDs. Then extend all the IDs by one bit. Append a
0 to the IDs of nodes in the original cube, and append a 1 to the IDs of nodes in the copy.
As an example the nodes in the 1D and 2D cubes in Figure 11 are labeled according to this
scheme; the labeling of the 3D and 4D cubes is left for an exercise.

Node IDs are the basis for a simple algorithm for routing information in a hypercube.
An n-dimensional cube will have n-bit node IDs. Sending a message from node A to node
B can be done in n cycles, where on each cycle a node will either hold a message or forward
it along one of its links. On cycle i the node that currently holds the message will compare
bit 7 of its own ID with bit ¢ of the destination ID. If the bits match, the node holds the
message. If they don’t match, it forwards the message along dimension i, where dimension

i is the dimension that was added in the i step of the construction of the cube (i.c. it is

High Performance Computer Architecture ik

root

interior

leaves

Figure 12: Tree and Star

the same “direction” at all nodes). As an example, the path from node 2 to node 7 in a 4D
cube is marked with a heavy gray line in Figure 11.

Another desirable property of interconnection networks is node symmetry. A node sym-
metric network has no distinguished node, that is, the
is the same from any node. Rings, fully connected networks, and hypercubes are all node
symmetric. Trees and stars, shown in Figure 12, are not. A tree has three different types of
nodes, namely a root node, interior nodes, and leaf nodes, each with a different degree. A
star has a distinguished node in the center which is connected to every other node. When a
topology is node asymmetric a distinguished node can become a communications bottleneck.

A more formal definition of a communication bottleneck is based on a property known
as the bisection width, which is the minimum number of links that must be cut in order to

ew” of the rest of the network

divide the topology into two independent networks of the same size (plus or minus one node).
The bisection width of a tree is 1, since if either link connected to the root is removed the tree
is split into two subtrees. The bisection bandwidth of a parallel system is the communication
bandwidth across the links that are cut in defining the bisection width. This bandwidth is
useful in defining worst- case performance of algorithms on a particular network, since it is
related to the cost of moving data {rom one side of the system to the other.

Another common topology is a planar (2D) mesh, shown in Figure 13. This network is
basically a matrix of nodes, each with connections to its nearest neighbors. Meshes usually
have “wraparound” connections, e.g. the node at the top of the grid has an “up” link that
connects to the node at the bottom of the grid. If you visualize only north-south links in
a rectangular mesh, you can see these links turn the 2D mesh into a 3D cylinder. Now if
the east-west links are added, it connects the ends of the cylinder to form a toroidal solid.
Thus a mesh topology with wraparound connections is often referred to as a torus. In many

High Performance Computer Architecture 47

Py Gray circles indicate closed
switches. A processor will attempt
to make at most one connection at

P1 atime, and each column can have

only one connection at a time. If

the processors try to connect to dif-
ferent memories none will be
blocked.

)

P3

My M; M; Mg

Figure 14: Crossbar Switch

as outputs and interior nodes that are m x m switches. Examples of banyan networks are
butterfly networks and omega networks, which are both built from 2 x 2 switches. The
diameter of a butterfly is log, n, where n is the number of inputs and outputs, and there
are O(n - log, n) switches, so these networks scale more efficiently than a crossbar (Figure
15). The 2 x 2 switch in a butterfly can be configured in one of two states (Figure 15). One
configuration connects input 0 to output 0 and input 1 to output 1. The other configuration
flips the outputs, so input 0 connects to output 1 and input 1 connects to output 0. The
switching network uses the binary representation of the destination address in order to
construct a path from input to output. The switch at stage 7 in the network uses bit 7 to
determine how to configure itself: if the bit is 0, the request should go through the top output,
and if it is 1 it should go through the bottom output. For example, suppose a processor
needs to fetch information from memory M;. The binary representation of 5 is 101. The first
switch will pass the request out its bottom output, the second switch will pass the request
out its top output, and the last switch will pass the request out its bottom output. Note that
this pattern of connections (top-bottom-top) works no matter which processor generates the
request. Whether a switch configures itself in the straight-through or flipped configuration
depends on which input the request comes from. For example, if the request comes from
the top input and should be routed out the top output, then the switch will go into the
straight-through configuration, but if the request comes from the top input and should go
out the bottom the switch will use the flipped configuration.

As is the case with the crossbar switch, there are configurations of the butterfly that
will allow each processor to connect to a different memory so all processors can be active
and no requests are blocked. However, the butterfly is not as flexible as the crossbar, since
combinations of requests that are nonblocking in the crossbar are blocking in the butterfly.

PR
aniian

Planar Mesh Wraparound Connections Twisted Torus

Figure 13: Mesh Topologies

systems the wraparound connections are skewed by one or more rows (or columns, or both);
in this case the topology is known as a twisted torus. Note that a path that starts in the
northwest corner of a twisted torus and heads continually east will visit every node exactly
once before returning to the northwest corner.

The two final interconnection networks introduced in this section are examples of mul-
tistage networks. Systems built with these topologies have processors on one edge of the
network, memories or processors on another edge, and a series of switching elements at the
interior nodes. In order to send information from one edge to another, the interior switches
are configured to form a path that connects nodes on the edges. The information then goes
from the sending node, through one or more switches, and out to the receiving node. The
size and number of interior nodes contributes to the path length for each communication,
and there is often a “setup time” involved when a message arrives at an interior node and
the switch decides how to configure itself in order to pa;

The first example of a multistage network is the crossbar switch Figure 14. In a typical

application there will be a column of processors on the left edge and a row of memories on the
bottom edge. The switch configures itsell dynamically to connect a processor to a memory
module. As long as each processor wants to communicate with a different memory there
will be no contention. If two or more processors need to access the same memory, however,
one will be blocked until the switch reconfigures itself. A crossbar has a short diameter —
information needs to pass through only one switching element on a path {rom one edge to
another — but poor scalability. If there are n processors and a like number of memories

there are n? interior switches. Adding another processor and memory means adding another
2n — 1 interior nodes.
A banyan network is a multistage switching network that has the same number of inputs

0 0 Po Mo
! ! Py My
) M;
0 0 P3 M3
1 1
Py My
An interior node is a switch Ps Ms
that is configured to pass data
straight through (top) or to Pg Mg

the opposite side (bottom)
P7 M7

Figure 15: Butterfly Network

For example, if the first switch in the first column is in the straight-through configuration
because processor Py is making a request to memory M, processor Py is constrained to
communicate with memories 4 through 7 (100, through 111;). With a crossbar P1 would be
allowed to connect to Mg, My, or M3 without blocking.

Crossbar and butterfly switches have both been used to implement shared memory mul-
tiprocessors. Even though there are independent memory modules, there is a single memory
space, i.e. an address i generated by one processor refers to the same cell as an address ¢
generated by any other processor. Addresses are not interleaved, though. Instead the mem-
ory space is divided into contiguous blocks of equal size. For example, suppose there are 4
memory units and the address space has 2'° = 1024 words. My would hold addresses 0 to
2

, M; would have 256 to 511, and so on.

Three important attributes of an interconnection network are the timing strategy, control
strategy, and switching strategy [4]. The two alternatives for control are a single central
controller or a distributed control system in which routing strategies are implemented in
cach node. Message routing based on node IDs in hypercubes and butterfly switches are
examples of distributed control, since each node decides for itsell how to reroute incoming
messages. A centralized strategy would work well in a star network: messages from outer
nodes must pass through the center, which would then decide how to forward the message.
Synchronous control techniques are characterized by a global clock that broadcasts clock
signals to all devices in a system so that the entire system operates in a lock-step fash-

High Performance Computer Architecture 19

ion. Asynchronous techniques do not utilize a single global clock, but rather distribute the
control function throughout the system, often utilizing many individual clocks for timing.
Control and coordination of the various parts of the system are accomplished via some form
of communication or “hand shaking.” Thus the interconnection network can operate syn-
chronously off of a global clock or it may have distributed control down to the level of the
individual switches. The advantage of a single global clock for control is simplicity in both
the hardware and the software; the advantage of distributed control is expandability and
flexibility. Synchronous and asynchronous timing strategies are a fundamental characteristic
of computing systems in general. The SIMD systems discussed previously normally operate
synchronously with a global clock while the MIMD systems function asynchronously with a
clock in each PE.

Switching strategy is the other important characteristic of interconnection networks. The
two most popular techniques are packet switching and circuil switching. In packet switching,
a message is broken into small packets which are transmitted through the network in a “store
and forward” mode. A packet traverses one link, where the receiving node will examine it
and decide what to do. It may have to store the packet for a while before forwarding it
toward its final destination, e.g. there may be other packets waiting to go out on that link.
It is also possible that packets will traverse different sets of links on their route from source
to destination. Packets may experience delays at each switching point depending on the
traffic in the network. The circuit switching technique establishes a complete path between
the source and the destination and then starts transferring information along the path. The
circuit is kept open until the entire message has been transmitted. We will see examples of
both strategies in the section on MIMD systems.

3.5 Survey of High Performance Architectures
3.5.1 Vector Processors

A vector processor is a processor that can operate on entire vectors with one instruction,
i.e. the operands of some instructions specify complete vectors. For example, consider the
following add instruction:

C=A+B

In both scalar and vector machines this means “add the contents of A to the contents of
B and put the sum in C.” In a scalar machine the operands are numbers, but in vector
processors the operands are vectors and the instruction directs the machine to compute the
pairwise sum of each pair of vector elements. A processor register, usually called the vector
length register, tells the processor how many individual additions to perform when it adds
the vector

A vectorizing compiler is a compiler that will try to recognize when loops can be trans-
formed into single vector instructions. For example, the following loop can be executed by
a single instruction on a vector processor:

High Performance Computer Architecture 51

of the major reasons for their demise was the large startup time, which was on the order
of 100 processor cycles. This meant that short vector operations were very inefficient, and
even for vectors of length 100 the machines were delivering only about half their maximum
performance. In a later section we will see how this vector length that yields half of peak
performance is used to characterize vector computers.

In the register to register machines the vectors have a relatively short length, 64 in
the case of the Cray family, but the startup time is far less than on the memory to memory
machines. Thus these machines are much more efficient for operations involving short vectors,
but for long vector operations the vector registers must loaded with each segment before the
operation can continue. Register to register machines now dominate the vector computer
market, with a number of offerings from Cray Research Inc., including the Y-MP and the C-
90. The approach is also the basis for machines from Fujitsu, Hitachi and NEC. Clock cycles
on modern vector processors range from 2.5ns (NEC SX-3) to 4.2ns (Cray C90), and single
processor performance on LINPACK benchmarks is in the range of 1000 to 2000 MFLOPS
(1 to 2 GFLOPS).

The basic processor architecture of the Cray supercomputers has changed little since the
Cray-1 was introduced in 1976 [28]. There are 8 vector registers, named VO through V7,
which each hold 64 64-bit words. There are also 8 scalar registers, which hold single 64-bit
words, and 8 address registers (for pointers) that have 20-bit words. Instead of a cache,
these machines have a set of backup registers for the scalar and address registers; transfer
to and from the backup registers is done under program control, rather than by lower level
hardware using dynamic memory referencing patterns.

The original Cray-1 had 12 pipelined data processing units; newer Cray systems have 14.
There are separate pipelines for addition, multiplication, computing reciprocals (to divide
X by Y, a Cray computes X - (1/Y)), and logical operations. The cycle time of the data
processing pipelines is carefully matched to the memory cycle times. The memory system
delivers one value per clock cycle through the use of 4-way interleaved memory.

An interesting feature introduced in the Cray computers is the notion of vector chaining.
Consider the following two vector instructions:

V2 = V0 * V1
V4 = V2 + V3

The output of the first instruction is one of the operands of the second instruction. Recall
that since these are vector instructions, the first instruction will route up to 64 pairs of
numbers to a pipelined multiplier. About midway through the execution of this instruction,
the machine will be in an interesting state: the first few elements of V2 will contain recently
computed products; the products that will eventually go into the next elements of V2 are
still in the multiplier pipeline; and the remainder of the operands are still in VO and V1,
waiting to be fetched and routed to the pipeline. This situation is shown in Figure 16, where
the operands from VO and V1 that are currently in the multiplier pipeline are indicated by
gray cells. At this point, the system is fetching VO[k] and V1[k] to route them to the first
stage of the pipeline and V2[j] is just leaving the pipeline. Vector chaining relies on the

50

DO 10 I=1,N

A(I) = B(I) + c(I)
10 CONTINUE

This code would be translated into an instruction that would set the vector length to N
followed by a vector add instruction.

The use of vector instructions pays off in two different ways. First, the machine has
to fetch and decode far fewer instructions, so the control unit overhead is greatly reduced
and the memory bandwidth necessary to perform this sequence of operations is reduced a
corresponding amount. The second payolff, equally important, is that the instruction provides
the processor with a regular source of data. When the vector instruction is initiated, the
machine knows it will have to fetch n pairs of operands which are arranged in a regular
pattern in memory. Thus the processor can tell the memory system to start sending those
pairs. With an interleaved memory, the pairs will arrive at a rate of one per cycle, at
which point they can be routed directly to a pipelined data unit for processing. Without an
interleaved memory or some other way of providing operands at a high rate the advantages
of processing an entire vector with a single instruction would be greatly reduced.

A key division of vector processors arises from the way the instructions access their
operands. In the memory to memory organization the operands are fetched from memory
and routed directly to the functional unit. Results are streamed back out to memory as
the operation proceeds. In the register to register organization operands are first loaded
into a set of vector registers, each of which can hold a segment of a register, for example
64 elements. The vector operation then proceeds by fetching the operands from the vector
registers and returning the results to a vector register.

The advantage of memory to memory machines is the ability to process very long vectors,
whereas register to register machines must break long vectors into fixed length segments.
Unfortunately, this flexibility is offset by a relatively large overhead known as the startup
time, which is the time between the initialization of the instruction and the time the first
result emerges from the pipeline. The long startup time on a memory to memory machine
is a function of memory latency, which is longer than the time it takes to access a value in
an internal register. Once the pipeline is full, however, a result is produced every cycle or
perhaps every other cycle. Thus a performance model for a vector processor is of the form

T'=s4aN

where s is the startup time, NV is the length of the vector and « is an instruction dependent
constant, usually 1/2, 1 or 2.

Examples of this type of architecture include the Texas Instruments Inc. Advanced
Scientific Computer and a family of machines built by Control Data Corp. known first as
the Cyber 200 series and later the ETA-10 when Control Data Corp. founded a separate
company known as ETA Systems Inc. These machines appeared in the mid 1970s after a
long development cycle that left them with dated technology and disappeared in the mid
1980s. For a thorough discussion of their characteristics, see Hockney and Jesshope [13]. One

Ut
bl

path marked with an asterisk. While V2[j] is being stored in the vector register, it is also
routed directly to the pipelined adder, where it is matched with V3[j1. As the figure shows,
the second instruction can begin even before the first finished, and while both are executing
the machine is producing two results per cycle (V4[i] and V2[j]) instead of just one.

Without vector chaining, the peak performance of the Cray-1 would have been 80 MFLOPS
(one full pipeline producing a result every 12.5ns, or 80,000,000 results per second). With
three pipelines chained together, there is a very short burst of time where all three are
producing results, for a theoretical peak performance of 240 MFLOPS.” In principle vector
chaining could be implemented in a memory-to-memory vector processor, but it would re-
quire much higher memory bandwidth to do so. Without chaining, three “channels”™ must
be used to fetch two input operand streams and store one result stream; with chaining, five
channels would be needed for three inputs and two outputs. Thus the ability to chain oper-
ations together to double performance gave register- to-register designs another competitive
edge over memory-to- memory designs.

3.5.2 Superscalar Processors

The evolution of microprocessors has reached the point where architectural concepts pio-
neered in vector processors and mainframe computers of the 1970s (most notably the CDC-
6600 and Cray-1) are starting to appear in RISC processors. Early RISC machines were very
simple single-chip processors. As VLSI technology improved more room became available on
the chip. Rather than increase the complexity of the architecture, most designers decided
to use this room on techniques to improve the execution of their current architecture. The
two principle techniques are on-chip caches and instruction pipelines.

The latest step in this evolutionary process is the superscalar processor. The name means
these processors are scalar processors that are capable of executing more than one instruction
in each cycle. The keys to superscalar execution are an instruction fetching unit that can
fetch more than one instruction at a time from cache; instruction decoding logic that can
decide when instructions are independent and thus executed simultaneously; and sufficient
execution units to be able to process several instructions at one time. Note that the execution
units may be pipelined, e.g. they may be floating point adders or multipliers, in which case
the cycle time for each stage matches the cycle times on the fetching and decoding logic.
In many systems the high level architecture is unchanged from earlier scalar designs. The
superscalar designs use instruction level parallelism for improved implementation of these
architectures.

A good example of a superscalar processor is the IBM RS/6000 [10]. There are three
major subsystems in this processor: the instruction fetch unit, an integer processor, and a
floating point processor. The instruction fetch unit is a 2- stage pipeline; during the first
stage a packet of four instructions is fetched from an instruction cache, and in the second

In the Linpak benchmark tables the theoretical peak performance of the Cray-1S is listed as 160
MFLOPS, probably because it was realistic to keep only two pipelines chained together for any reason-
able period of time

High Performance Computer Architecture 53

pipeline depth
—_—A

s

l [TTTTT, l V2 < WtV
A .

VL [——

J. (.
D

va [

|

Figure 16: Vector Chaining

P MP M P M P MP M P M
——
processing element cluster

Figure 17: Mesh cm™

into vector instructions. A superscalar machine still requires a very sophisticated compiler
to allocate resources and schedule operations in an order that will best take advantage of the
resources of the machine, but in the long run the superscalar approach may be more flexible
and applicable to a wider range of applications than vector processing.

3.5.3 Shared Memory MIMD Multiprocessors

The history of shared memory multiprocessors goes back to the early 1970s, to two influential
research projects at Carnegie- Mellon University. The first machine, named c.mmp (from
the PMS notation for “computer with multiple mini-processors™), was organized around a
crossbar switch that connected 16 PDP-11 processors to 16 memory banks. The second,
cm™, also used PDP-11 processors, but connected them via the tree-shaped network shown
in Figure 17 on page 63. The basic building block for this system was a processor cluster,
which consisted of four processors, each with their own local memories. The global memory
space was evenly partitioned among the memories in the system. When a processor generated
a request for address 7, its bus logic would check to see if i was in the range of addresses in
that machine’s local memory. If it wasn’t, the request was transferred to a cluster controller,
which would see if ¢ belonged to any other memory within that cluster. If not, the request
would be routed up the tree to another level of cluster controllers. In all, 50 processors were
connected by three levels of buses.

cm™ was an early example of a non-uniform memory access (NUMA) architecture. De-
pending on whether an item was in a processor’s local memory, within the same cluster, or in
another cluster, the time to fetch an item was 3us, 9yus, or 27us, respectively. As a reference
point, a PDP-11 of this era, without the cluster interconnection logic, could fetch an item
from main memory in about 2pus.

One of the first commercial systems of this type was the BBN Butterfly. As its name
implies, it consisted of a butterfly switch connecting up to 256 processors and memories. The
processors were Motorola 68000 single-chip microprocessors. BBN added an extra path from
the processors to memory by pairing up each processor with one of the memory modules,

stage instructions are routed to the integer processor and/or floating point processor. An
interesting feature of this instruction unit is that it executes branch instructions itselfl so
that in a tight loop there is effectively no overhead from branching since the instruction unit
executes branches while the data units are computing values. The integer unit is a four-
stage pipeline. In addition to executing data processing instructions this unit does some
preprocessing for the floating point unit. The floating point unit itself is six stages deep.

The following example from [10] shows the potential of this style of computing. This
code from a computer graphics application rotates and displaces a set of (x,y) pairs by an
angle q and displacement (xq, yq):

vt =a;c0s0 —y;sin® + x4
Yy, =yicos© — ;sin® + y,

A vector processor would load the (z,y) pairs into two vector registers and then use vector
instructions. On the RS/6000 the operations are compiled into the following loop (constants
x4, sin O, ete. are loaded into registers before the loop begins):

L: load R8,x[i]
fma R10,R8,cos,xd
load R9,yl[il
fma R11,R9,cos,yd
fma R12,R9,-sin,R10
store R12,x[i]’
fma R13,R8,sin,R11
store R13,y[i]’
branch L

The fma W,X,Y,Z instruction is “floating multiply and add”, i.e. W = X*Y+Z . Note
that the compiler has carefully interleaved load and store instructions with data processing
instructions, and there are eight floating point operations (two per fma instruction) in each
loop iteration and the loop itself has eight instructions, not counting the branch. Over the
entire loop, then, the processor initiates one floating point operation per instruction. Since
the instruction fetch unit executes the branch there are no cycles when the floating point
unit is not busy. The machine will deliver one result per cycle for arbitrarily long vectors
as long as there are no cache misses. See [10] for a detailed explanation of the timing of
this loop. A 62.5 MHz RS/6000 system ran the LINPACK benchmark (Gaussian elimina-
tion) at a rate of 104 MFLOPS and has a theoretical peak performance of 125 MFLOPS.
The HP 9000/735 workstation has a 99 MHz superscalar HP-PA processor. This machine
executes the LINPACK benchmark at 107 MFLOPS, with a theoretical peak performance
of 198 MFLOPS. By comparison, the Cray-1S, with a clock cycle of 80MHz, performs at
110 MFLOPS and a theoretical peak of 160 MFLOPS. The advantage of the superscalar
approach is that it does not rely on a vectorizing compiler to detect loops and turn them

so each processor had a “favored” memory unit. The processor could access this memory
directly without going through the switch. The result was a NUMA architecture, with a
ratio of about 15:1 in access times depending on whether the processor used the butterfly
switch or the direct connection.

A recent commercial system in this category, with computing power and scalability that
could potentially make it widely used in computational science, is the KSR-1 from Kendall
Square Research. Processing elements are connected in rings, with from 8 to 32 PEs per
ring. Larger systems have a second level ring that connects up to 34 first- level rings, for a
maximum machine size of 1088 processors. Each ring is unidirectional, i.e. information flows
in only one direction, with a bandwidth of 1 GB/sec.

Each PE has a 32MB cache, but there is no primary memory. This unusual organization
uses a cache directory to access all information. When a processor makes a reference to an
item in location ¢, the cache line that contains ¢ migrates around the rings until it reaches
the requesting processor. If two or more processors need an item the hardware implements
the necessary cache coherency protocols to keep the items up to date. This type of system
is also known as a shared virtual memory.

The processors in the KSR-1 are proprietary 64-bit superscalar processors with a 20MHz
cycle time. According to the LINPACK benchmark report, a single KSR-1 processor achieves
31 MFLOPS out of a theoretical peak of 40 MFLOPS on 100 x 100 Gaussian elimination.
A 32-node system reaches 513 MFLOPS, a speedup of a factor of 16.5.

3.5.4 Multiprocessor Vector Machines

Most of the vector supercomputer manufacturers produce multiprocessor systems based on
their vector processors. Since a single node is so expensive and so finely tuned to memory
bandwidth and other architectural parameters, the multiprocessor configurations have only
a few processors. The largest currently is the Cray C-90, which has up to 16 processors.
An 8-processor Cray Y-MP is a shared memory MIMD system in the style of the BBN
Butterfly, with processors connected to a set of memories via a multistage switching network.
The switching network is a 3-level crossbar. A major difference between the switching net-
works in the Butterfly and Y-MP is that in the Y-MP there are many more memory modules

than processors since the individual processors were designed to connect to an interleaved

memory. There are enough memory modules 32 per processor and enough flexibili

in the switch to allow each processor to connect to several banks at once so it can transfer
vectors into and out of vector registers at a rate of one item per clock cycle. The assignment
of virtual addresses to memory modules differs from the Butterfly arrangement, also, since
in the interleaved organization consecutive addresses need to be in different modules. An
exception to the rule that few processors are used in multiprocessor vector machines is a
-processor system recently announced by Fujitsu. The nodes in this machine will be in-
terconnected via a large, single-stage crossbar switch. Each node in the system consists of a
local interleaved memory, a scalar processing unit, and a vector processing unit. The network

interface implements a single address space from the individual local memories. Each node

High Performance Computer Architecture 57
PE = P m=m Mc
Each PE has a proprietary £ ggrﬁ?\r:cjts Izvpe Imrlr;g
superscalar processor and - .
32MB cache. first level rings.
PE
PE
PE
First level ring: 1 GB/sec bandwidth PE
unidirectional transfer, connecting up
to 32 PEs PE
PE PE
PE
Figure 18: Kendall Square Research KSR-1
High Performance Computer Architecture 59

processors, and up to 32MB of local memory. The interconnection network is based on the
idea of a “fat tree,” a tree that has wider communication channels near the root in order to
handle the higher volume of traffic expected to flow in that region of the network Figure 19
on page 67. Each communication link in the CM-5 has a bandwidth of 20 Mbps. There are
two upward links from each leaf node. The links are attached to different switches, both for
higher bandwidth and to provide alternative routes to avoid congestion in the network. First
level interior switches have two upward links, but higher level switches have four upward links
to implement the fat tree idea of higher bandwidth closer to the root.

The CM-5 has a control network consisting of a set of control processors interconnected
with their another tree-shaped network. The control processors and their tree are a com-
pletely separate subsystem. Control processors are also SPARC microprocessors, but since
they do little if any data processing they do not have as much memory or any vector copro-
cessors. It is the control network that allows the system to operate as an SIMD or SPMD
machine by synchronizing sets of data processors when they are all working on the same
program.

3.5.6 SIMD Machines

Several commercial SIMD machines were introduced in the 1970s, but they were not very
widely used. Interest in this class of machines was renewed in the late 1980s with the
introduction of the Connection Machine (CM-1) from Thinking Machines, Inc., and the
MasPar MP-1. Part of the renewed interest is certainly the result of VLSI technology, which
had advanced by that time to the point where several small processors could be put on a
single chip. By themselves these processors were too simple to compete with general purpose
single-chip processors such as the Motorola 68020 or Intel 80386, but literally thousands of
them could be packaged in a small space and built into a cost-effective system. For example,
32 MP-1 processors fit on a single chip, and 32 chips were placed on a single board, for a
total of 1024 processors (and their associated memory) in approximately 4 square feet.

The CM-1 was based on 1-bit processors. Every operation in the machine processed 1-bit
operands and produced 1-bit results. Operations on larger data elements, for example 32-bit
integers, required one cycle per bit. Attached to each processor was a local memory with
a capacity of 4K bits. Memory references, like processor operations, were 1-bit operations,
i.e. a fetch copied 1 bit from memory into a 1-bit processor register. 16 processors were

implemented on a single chip. Within a chip, processors were connected with a grid, and
up to 4096 chips were connected via a 12-dimensional hypercube. All processors obeyed
instructions issued by a central control processor, which in turn was connected to a front-
end workstation.

The MasPar MP-1 was introduced a few years after the CM-1. It also has a very narrow
datapath, but it processes data 4 bits at a time instead of 1 bit at a time. Each processor can
have up to 64KB of local memory. One of the interesting aspects of the MP-1 is that there
are two separate communication systems, and programmers can alternate between them to
choose the best performance for different parts of their algorithms. One interconnection

58

in the VPP500 will have a peak performance of about 1.5 GFLOPS, so a full 222 processor
system will have a theoretical peak performance of over 300 GFLOPS.

3.5.5 Distributed Memory MIMD Systems

An early and very influential distributed memory parallel processor was the “Cosmic Cube”,
a research project carried out by members of the Physics and Computer Science departments
at Caltech [30]. This was one of the firs
medium for exchanging messages, as opposed to an extended bus that simply fetched single
words.

stems to treat the interconnection network as a

Each node in the Cosmic Cube was a single-board computer with an Intel 8086 processor
chip, 8087 floating point coprocessor, and 128KB memory. 64 boards were interconnected
as a 6-dimensional hypercube. Communication over the interconnection network was fairly
slow, at 2Mbps per link, and used a store and forward protocol. Intel’s commercial version
of the Cosmic Cube was the iPSC-1, which used 80286 processor chips, 512KB memory
per node, and 10Mbps communication chips, and came in configurations {rom 16 to 128
processors (from 4D up to 7D hypercubes). Other commercial hypercubes of this era included
the NCUBE-1 and FPS T-series.

The iPSC-2 was also a hypercube-based machine, but it incorporated “worm-hole rout-
ing” in place of the store and forward packet switching used in earlier systems. A worm-hole
router uses a form of circuit switching to establish a communication path bet
cessors according to fixed rules. For example, in the two dimensional mesh the rule might be
to use the vertical links first until the row of processors containing the destination processor
is reached and to then use the horizontal links until the connection is made. Efficiency is
improved because the technique removes the requirement that each processor along a route
makes a decision about the direction of the next step of the communication. This in effect
reduces the dependence of the diameter of the array on the number of steps required to

een two pro-

transmit a data item from one end of the system to the other. What one gains in efficiency
one loses in flexibility because worm-hole routing eliminates the opportunity to use alternate
paths that might be provided by the network. For example, congestion on a single link may
be unavoidable even though alternate paths are available to ecase the congestion.

Following the iPSC/2 (and the iPSC/860, which was similar but used i860 RISC pro-
cessors instead of 80386 processors at each node), Intel built a research machine known as
the Touchstone Delta. A commercial system based on the Delta is the Paragon XP/S. The
interconnection network is a 2D mesh instead of a hypercube, and uses specially designed
message routing chips to improve communication bandwidth. Each node in the Paragon has
two 1860 processors, one for computation and the other for message handling. This second
processor deals with incoming messages and other overhead so the main processor does not
have to be interrupted to handle message traffic.

An interesting machine that is a hybrid with attributes of both SIMD and distributed
memory MIMD machines is the CM-5 from Thinking Machines. The basic machine consists
of a tree of processing nodes, where each node has a SPARC microprocessor, optional vector

60

lly
s

A7

— 40 Mbps
2n Mbps

n Mbps

(a) Communication in a fat tree (b) PMS diagram of the
data network in CM-5

P r Knet -l r Knet -l
data control data control

network network network network

(c) Data Processor Node (d) Control Processor Node

Figure 19: Thinking Machines Corporation CM-5

High Performance Computer Architecture 61

2 7 p

(1) (i) (iii)

(above) Three configurations of a switch.

P P P
(right) A processor can communicate with
any of its 8 neighbors even though it is con-
nected to only four switches. The path P P P

marked with an arrow is made by setting the
switch in configuration (i).

Figure 20: Switching in an X-net

network is known as the X-net (Figure 20). It connects each processor to its 8 nearest
neighbors in a 2D mesh with wraparound connections. The other connection is a global
router, which provides point-to-point communication between any two PEs. The router is
implemented by a 3-stage switching network, where each stage in a 1024-processor machine
contains a 16 x 16 crossbar; together the three stages comprise a 1024 x 1024 crossbar. The
processors are controlled by a proprietary RISC processor known as the array control unit,
or ACU. The ACU has its own local memory and is used for scalar operations, while the
processor array is intended for vector and array operations. An MP-1 can be configured as
an n x n square mesh or a n x 2n rectangular mesh. The smallest configuration has 1,024
processors and the largest has 16,384 processors in a 128 x 128 grid.

The newest machines from Thinking Machines and MasPar are the CM-5 and MP-2,
respectively. The CM-5 is described in more detail in [15]. The MP-2 has a wider internal
data path than the MP-1 — 32 bits vs. 4 bits — but is otherwise very similar to the MP-1
in that it uses both the X-net and global router to connect PEs in a 2D mesh. The largest
MP-2, which has 16,384 (2!*) processors, has a theoretical peak performance of 550 MFLOPS
and reaches 473 MFLOPS on the LINPACK benchmark for parallel machines.

3.6 Performance Models for Vector and Parallel Machines

Hockney and Jesshope [13] introduced two parameters to describe the performance of vector
processors. The first parameter is the theoretical peak performance, or asymptotic perfor-

High Performance Computer Architecture 63

the subroutine that runs twice as fast, total execution time will drop to 6.0 seconds (8.0/2
seconds for the subroutine, 2.0 seconds for the remainder of the program). If we find a parallel
subroutine that speeds up perfectly on P processors, and run the program on an 8-processor
machine, execution time will drop to 3.0 seconds (8.0/8 seconds for the parallel portion, 2.0
seconds for the sequential portion). If we run on 100 processors, the total execution time
will be 2.08 seconds. As more processors are used, the execution time gets closer to the time
required for the sequential part, but it can never get lower than this. Since the fastest this
program will ever run is 2.0 seconds, no matter how many processors are used, the maximum
speedup is a factor of 5.0.

If we normalize the formula that defines speedup by letting the sequential execution time
be 1 and expressing the other times as percentages of the sequential time, we derive the
following formulation of Amdahl’s law for parallel processors:

1
(1—a)+a/Sp

This version of the equation makes the contribution of the sequential portion of the com-
putation more apparent. Here @ is the fraction of the program that can be performed in
parallel, and thus (1 — a) is the portion that is sequential. The denominator is the time
to execute the program in parallel, i.e. the sum of the time spent in the sequential portion
and the time spent in the parallel part, where the parallel time is a function of the speedup
factor of the parallel portion. If the parallel portion exhibits perfect speedup, i.e. a factor of
P when run on P processors, the equation becomes:

o
(l—a)+a/P

The efficiency of a parallel computation is the ratio of the speedup to the number of
processors used to obtain that speedup:

S
Nz

For example, if 10 processors are used and the program runs 10 times faster, we are running
at the maximum possible speed, i.e. all processors are being used to their full capacity. If the
speedup is only a factor of 5, however, the efficiency is 5/10 = 0.5, i.e. hall the computing
power is lost in overhead or synchronization.

The above models do not try to characterize the execution of a parallel program. They
simply measure the time required to execute a program on a given machine, and compare
that time to sequential execution times. A simple model that breaks a parallel program into
constituent parts is

Ep

T = teomp + Loomm + Lsync

The three components of overall execution time are feomp, the computation time, feomm,
the time spent in communication, and ., the time used to synchronize the processors at

62

mance, denoted r.,. It is the maximum possible rate of computation, expressed as a number
of floating point operations per second. The parameter may be applied to a single vector
pipeline or to an entire system. Thus r, for a single pipe of the Cray Y-MP is 167 MFLOPS
(6ns cycle, one result per cycle), and approximately 2.6 GFLOPS for an 8-processor system
with the add and multiply units in operation simultancously. The other parameter, desig-
nated ny/; and known as the half performance length, is the length of the vector for which a
system attains half of its peak performance, i.c. 0.5 . ny/y is a function of vector startup
time and pipeline depth. As these values increase it becomes harder and harder to achieve
near peak performance for the system because it requires algorithms with longer and longer
vectors. As we saw in section 2.2, the startup times for the CDC vector computers were an
order of magnitude greater than those from Cray Research. This is reflected in 1y, for the
two systems differing also by an order of magnitude. Even though r., was higher for the
CDC machines, the systems from Cray proved more popular than those {from CDC, so users
scem to find lower ny/, more important.

Perhaps the most fundamental performance question that can be asked of an algorithm
running on a parallel system is “does it run faster, and if so by how much?”. Ideally, if
one uses P processors to solve a given problem, the execution time would be cut by a factor
of P. This leads to a definition of speedup, which is the ratio of the execution time on one
processor to the execution time on P processors:

g Execution time using one processor
Sp =

Execution time using P processors

For example, if a program takes 18 minutes to run on one processor, but only 4.7 minutes
on four processors, the speedup is a factor of 18.0/4.7 = 3.8.

The strength of such a measure is that it uses observed execution time and thus takes
into account any overhead in the parallel system for breaking a job into parallel tasks and
intertask communication time. Comparing time on one processor vs. time on P processors
can be misleading, however. One might be tempted to write a program for a P-processor
machine, time it first on one processor and then on P processors, and call the ratio the
speedup. Plotted for different values of P this procedure gives an accurate measure of
the scalability of the algorithm used, but it does not answer the question how much faster a
problem may be solved using P processors since a parallel algorithm usually incurs overheads
that are not found in sequential algorithms. Ortega and Voigt [24] defined speedup as the
ratio of the solution time for the best serial algorithm with that required by the parallel
algorithm:

g Execution time for the best serial algorithm on one processor
Sp =

Execution time for parallel algorithm on P processors

In the 1960’s, Amdahl [1] noted that speedup is limited by the size of the portion of a
problem that is not executed faster. For example, suppose a program that executes in 10.0
seconds contains a key subroutine that accounts for 80% of the execution time. The rest of
the program uses 20% of the total time, or 2.0 seconds. If we use a more efficient version of

64

appropriate points in the algorithm. This type of analysis is very important for algorithms
that will run on distributed memory machines, where locality and communication costs will
play a major role in efficiency.

Expressions for communication complexity can range from very simple, e.g. all commu-
nication requires the same amount of time (a reasonable model in some cases for a shared
memory system), to very complex, as would be required for an accurate model of a dis-
tributed memory system that communicates by message passing. In the former case, the
number of accesses to memory times the average access time might suffice. In the latter case,
a more complex analysis is necessary for an accurate model. For example, the time to send
a message [rom processor ¢ to processor j in a packet switched network is often modeled by
an expression such as

a+b-n,

where a is the overhead in setting up the message in the sending processor (and, if
necessary, storing a message in the receiving processor), b is the distance from i to j, and n,
is the length of the message in packets. Again, this simple formula hides many additional
complexities that might or might not effect performance: the existence of a separate processor
at each processing node to handle messages, contention at links or nodes, whether or the
routing is fixed or dynamic, etc.

The overhead for synchronization can also involve a number of issues depending on the
algorithm and the type of synchronization mechanism used. For example, an SIMD system
automatically synchronizes parallel subtasks and no further modeling is required. For MIMD
systems, in addition to the overhead associated with the actual synchronization process, there
is also the idle time created when processors wait at a synchronization point. A thorough
discussion of synchronization mechanisms may be found in Andrews and Schneider [1983].
The development of a complexity model involving all three of the above factors in great
detail may be found in Reed and Patrick [1985]. A general discussion of many of the issues
relative to linear algebra algorithms may be found in Ortega [1988].

Exercises 65

4 Exercises

Exercise 1 The creation of a PMS diagram for one of the compuler systems that you cur-
rently use.

Draw a PMS diagram for one of the systems you use. The diagram should include at least
the size of main memory and cache, the processor(s), and the pathways between processor(s)
and memory. Consult [32] for more information on PMS if necessary.

Exercise 2 The analyis of a computer system.

Write a program that creates two n x n matrices of random real numbers between 0 and
1 and then computes the product of the two matrices. n should be an input parameter. The
only output from the program should be the time required to multiply the matrices.

Analyze the complexity of your program, i.e. how many operations does it perform as
a function of the input size n?

Construct a table of execution times as a function of the matrix size n. Keep adding
entries until you have runs that take more than a few minutes. Do the entries in the
table agree with your predicted performance model?

Plot the data in the table with gnuplot or one of the other plotting packages described
in Chapter “Scientific Visualization In High Performance Computing”.

From the data in the table can you tell when the matrices are large enough so they
don’t all fit in cache? How does this data point correlate with the size of the cache on
your system?

If you have a vector processor, can you infer anything about optimum vector sizes from
the pattern of data in your table?

If you are collecting your data on a workstation, record the system load average along
with the execution time. Try several runs of the same matrix size but at times when
the load average is high, medium, and low. Plot the data again, either with separate
lines for different load averages, or with error bars that show the range of times. Does
system load affect the performance of your program?

Exercise 3 A comparison of your calculated values versus the manufacturer’s reference val-

ues.

Look up “MIPS” rating of your machine, either in the manuals provided by the man-
ufacturer or in a standard reference ([find Dongarra’s numbers]). How does it compare to
numbers you achieved in previous problem?

Exercise 4 Communication bandwidth between frame buffer and monitor.

Exercises 67

Figure 21: Gantt chart for 8-way interleaved memory

Exercise 10 An analysis of memory cycle time.

A Gantt chart can be used to show how interleaved memory works by drawing one row for
each memory bank. Mark the time line in units of processor cycles. If a processor requests
an item {rom bank b at time ¢, draw a line in row b starting at time ¢ and continuing for
n units, where n is the memory cycle time. Figure 21 shows the Gantt chart for an 8-way
interleaved memory in a system where the processor cycle time is 10ns and the memory cycle
time is 40ns. The chart illustrates which memories are busy when the processor requests
items [rom successive memory cells. Asterisks on the time line indicate when data items

reach the processor (assuming data is delivered on the last memory cycle). Asterisks in
every column indicate the memory is performing at its full potential, i.e. there are no bank
conflicts.

Use a Gantt chart to show that for a system with 16 memory banks, 12.5ns processor
cycle time, and 50ns memory cycle time, there will be no conflicts when the stride is 2 or
4, but there will be conflicts when the stride is 8 or 16. (NOTE: these cycle times and
interleaving factors are taken from the Cray-1).

Exercise 11 An illustration of vector chaining.

Use a Gantt chart to illustrate the effectiveness of vector chaining. Use the following
parameters: the length of each vector is 64 elements; the multiply pipeline is 7 stages deep,
the add pipeline has 6 stages, and there is a one-cycle delay (called the chain slot time) after
producing the first product before the first pair of operands go to the adder. How many
cycles does it take to compute V4 = V3+(V0*V1) without chaining? With chaining?

66

What is the communication bandwidth between the frame buffer and the monitor in a
typical high resolution 8-bit RGB display?

Exercise 5 Number of unique n-bit strings.

Use mathematical induction to prove there are 2" unique n-digit strings composed only
of the symbols 1 and 0.

Exercise 6 Representation of a negative inleger.

Prove that if b = bgby...b.—s is the n-bit representation of the integer z, the two’s
complement of b, found by inverting every bit b; and adding 1, is the representation of —z.
Hint: the value of the complement of b; is 1 — b;.

Exercise 7 Bil shifts and mathematical operations.

(a) Prove that if b = bgby ...b,_y is the n-bit representation of the integer z, then (a)
shifting b left by i bits is equivalent to multiplying @ by 27 and (b) shifting b right by i bits
is equivalent to dividing @ by 2° (ignoring any remainder).

(b) If by = 1, b represents a negative number in a two’s complement system. In what
is known as a “logical shift right” 0’s are inserted into the leftmost bits, which means the
result will be a positive number. Obviously if we divide a negative number by a power of
two we expect a negative result, and in this case the logical shift doesn’t give the correct
answer. For example, —16 +4 = —4. The 8-bit two's complement representation of —16 is
11110000. If we shift it right by two bits to divide by 4, we get 00111100, which represents
60, not —4. Can you think of a simple way to “fix” the shift operation so that it gives the
correct result when it shifts both positive and negative numbers?

Exercise 8 Low order bits and division by powers of 2.

Prove that if b = byby ... b,y is the n-bit representation of the integer , the low order ¢
bits are the value of the remainder of b+ 2'. NOTE: this operation is also performed very
efficiently on most machines. Let m be a pattern known as a “mask”™ that contains 0’s in the
high order n —i bits and 1’s in the low order ¢ bits. An operation known as a “bitwise AND”
will compute a pattern @ such that x; = b; A m; (the A operation is the logical AND, which
is 1 if and only if both operands are 1). To find the remainder of a division by 2, create a
mask with ¢ 1's in the low order bits, then “and” it with b. For example, the remainder of 14
(00001110 in an 8-bit system) divided by 4 = 22 is 00001110 A 00000011 = 00000010 — 2;q .

Exercise 9 Floating point numbers on your system.

Explain the floating point number system on the machine that you are using.

Look up the representation for floating point numbers in the system you will be using for
this course. Does it conform to the IEEE standard (standard 754)7 How many bits are in
the mantissa and exponent in single precision? In double precision? Does a double precision
number really have twice as much precision as a single precision number? Explain.

6R

(a) Hypercube (b) Cube-connected cycle

Figure 22: A single vertex in a 3D cube

Exercise 12 Registers and the performance of the SAXPY benchmark.

What is your understanding of the connection between scalar registers, vector registers,
and floating point units for the performance of the SAXPY benchmark?

Does vector chaining improve performance on the SAXPY benchmark? What could you
infer about the organization of the data path and the connection between scalar registers,
vector registers, and floating point units if you measured the performance of SAXPY and
found out that operands were indeed being chained between data units?

Exercise 13 A cosideration of a parallel machine with a hypercube topology.

Each vertex of a d-dimensional hypercube is connected to d other vertices. In a parallel
machine with a hypercube topology, there is a single processor at each node, and it is linked
to d other processors. An alternative design is to place a ring of d processors at each vertex,
linking the i*" processor to the neighboring vertex along dimension i. The result is a topology
known as a cube-connected cycle (CCC) (Figure 22). Every node in a CCC is connected to
3 other nodes: its two neighbors in the ring plus the node in the neighboring vertex. Thus
a CCC has a constant degree, no matter how many nodes are in the topology.

(a) What is the diameter of a CCC (assume bidirectional communication).

(b) How many nodes are in a general n-dimensional CCC?

(c) Draw a picture of a 4-dimensional CCC.

Exercise 14 Same as above, but for Mayfly’s hevagonal mesh.

Exercise 15 A determination of the paths for some messages for a 3D and 4D hypercube.

Exercises 69

Label the nodes in the 3d and 4d hypercubes in Figure 11. In the 4D cube, draw the
paths that are taken by the following messages: from 0 to 15; from 3 to 12; from 5 to 10,
and from 10 to 5.

Exercise 16 A determination of the two different paths taken by messages between two
processors in a hypercube.

You may have noticed in the previous exercise that the message from node 5 to node 10
travels a different path than the message from node 10 to node 5. Explain why, for any two
processors i and j, messages sent from i to j travel a different path than messages from j to
i. Can you characterize the relationship between the two paths?

Exercise 17 A determination of the processor-memory connections for a butterfly switch
ﬂTI‘[Z"gC'”ICTL[.

For each interior node in the butterfly switch of figure Figure 15, indicate whether it is
in the straight- through or flipped configuration for the following pairs of processor-memory
connections. Assume the connections that come first in the list are made first by the switching
network:

P0O- M3, P1-M5, P2-M2, P3-MT7, P4-M6, P5-M0, P6-M4, P7-M1

How many of these connections block due to contention in the switch?

Exercise 18 A determination of the PMS diagram for the crossbar switch connecting the
processing elements of a MasPar MP-1 and a Fujitsu VPP500.

Most of the uses of a crossbar switch mentioned in this chapter connect a set of processors
on the “input” side to a set of memories on the “output” side (Figure 14). However, two
systems, the Fujitsu VPP500 and the MasPar MP-1, use a crossbar to interconnect processing
elements (PEs), nodes which consist of a processor and its local memory. Draw a PMS
diagram of such a system and explain how information could be moved from one node to
another.

Exercise 19 A consideration of some of the communication that takes place on a KSR-1.

The ring network in the KSR-1 is a slotted ring, which means packets flow around the
ring in discrete steps under control of a global clock. The KSR-1 transfers 128 million packets
per second past each slot on the ring.

(a) The bandwidth is 1GB/sec. How wide is the communication channel?

(b) The processor cycle time is 20MHz. How many packets can be taken off the ring
during each processor cycle?

(¢) What is the diameter of a full-size (1088-PE) KSR-17

(d) Ignoring communication overhead and the possibility of contention that would de-
lay a message, how long will it take the machine to transfer 256 bytes along the longest
communication path?

Exercises 71

References

[

Amdahl, G., The Validity of the Single Processor Approach to Achicving Large Scale
Computing Capabilities, AFIPS Conf. Proc. 30, pp. 483 485, 1967.

=

[2] Andrews, G., and Schneider,F., Concepts and Notations for Concurrent Programming,
Computing Surveys, Vol. 15, pp. 3-43, 1983.

3

Bell, G. The Fulure of High Performance Computers in Science and Enginecering,
Comm. ACM, Vol. 32, pp. 1091-1101, 1989.

[

Bhuyan, L., Yang, Q., and Agrawal, D., Performance of Multiprocessor Interconnection
Networks, Computer, Vol. 22, No. 2, pp. 25-37, 1989.

[5

Bouknight, W.J., et al., The ILLIAC-IV System. Proc. IEEE, April 1972, pp. 369-388.
(reprinted in CSPE)

[6] Buzbee, B., Remarks for the IFIP Congress '83 Panel on How to Obtain High Perfor-
mance for High Speed Processors, Los Alamos National Laboratory Report LA-UR-84-
1392, Los Alamos, NM, 1983.

[7] Denning, P. and Tichy, W., Highly Parallel Computation, RIACS Report TR-90.35,
NASA Ames Research Center, Moffet Field, CA, August, 1990.

[8] Dongarra, J.J.. Performance of Various Computers Using Standard Linear Equations
Software. Tech Report CS-89-85, Univ. of Tennessee. [A continually updated report
listing the performance of several hundred machines (from Cray C90 to
Atari ST) on LINPACK benchmarks.]

[9] Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE Trans. Com-
put., Vol. C-21, pp. 94, 1972,

[10] Grohoski, G.F.. Machine Organization of the IBM RISC' System/6000 Processor.
IBM J. Res. Develop. 43(1), January 1990, pp. 37-58. [Detailed explanation of
superscalar execution in a modern RISC processor.]

[11] Hennessy, J.L., and Patterson, D. A.. Computer Architecture: A Quantilative
Approach, Morgan-Kauffman, 1990. [Excellent modern text on basic computer
architecture; rapidly becoming the standard text in senior undergraduate
level computer science courses.|

[12] Hennessy, J.L.. VLSL Processor Architecture. IEEE Trans. Comp. C-33(12), Decem-
ber 1984, pp. 1221-1246. [Excellent article on the interaction between VLSI
technology and computer processor design. In-depth discussion of
then-emerging RISC designs and alternatives.8-960.]

70

Exercise 20 A plot of Amdahl’s law.

Use gnuplot or some other plotting package to plot Amdahl’s law for different values of
P. Note that a varies from 0 to 1, i.e. from completely sequential to completely parallel.

=1
o

[13] Hockney, R., and Jesshope, C., Parallel Computers 2, Adam Hilger, Ltd. , Bristol,
United Kingdom, 1988. [A good resource for computational scientists, with a
nice history of high performance computing and comprehensive survey of
parallel algorithms for important matrix operations in addition to
parallel and vector computer architecture.]|

[14] Hwang, K., Advanced Parallel Processing with Supercomputer Architectures, Proc. IEEE,
Vol. 75, pp. 1348-1379, 1987.

[15] Hwang, K., Advanced Computer Ar-
chitecture. McGraw-Hill, 1993. [A very recent book on parallel processing and
high performance computing; a good reference for facts about recent
machines, including CM-5, KSR-1, and Paragon X/PS.]

[16] Gannon, D., and Van Rosendale, J., On the Impact of Communication Complexity on
the Design of Parallel Numerical Algorithms, IEEE Trans. Comput., Vol. C-33, pp.
1180 1194, 1984.

[17] Karp, A., Programming for Parallelism, Computer, Vol. 20, No. 5, pp. 43-57, 1987.

[18] Kogge, P.. The Architecture of Pipelined Computers. McGraw-Hill, 1981. [Dated, but
excellent in-depth coverage of pipelined processors.]|

[19] Leighton, F.T., Introduction to Parallel Algo-
rithms and Architectures. Morgan-Kauffman, 1982. [A comprehensive theoretical
view of architectures and algorithms; a good reference for parallel
algorithms and interconnection networks.]|

[20] Metcalfe, R.M., and Boggs, D.R., Ethernet: Distributed Packet Switching for Local
Computer Networks. Comm. ACM 19(7), July 1976, pp. 395-404. [reprinted in CSPE]

[21] Minsky, M., Form and Content in Computer Science, J. ACM, Vol. 17, pp. 197 215,
1970.

[22] Nitzberg, B., and Lo, V., Distributed Shared Memory: A Survey of Issues and Algo-
rithms, Computer, Vol. 24, No. 8, pp. 52 60, 1991.

[23] Ortega, J., Introduction to Parallel and Vector Solution of Lincar Systems, Plenum
Press, NY, 1988.

[24] Ortega, J., and Voigt, R., Solution of Partial Differential Equations on Vector and
Parallel Computers, STAM, Philadelphia, PA, 1985.

[25] Patterson, D.A., Reduced Instruction Set Computers, Comm. ACM 28(1), Jan-
uary 1985, pp. 8-20. [Discussion of RISC principles, with good explanation
of instruction pipelines and how RISC can take advantage of them.]|

[26]

w
=

i)
Z

[34]

3]

Exercises 73

Reed, D. and Grunwald, D., The Performance of Multicomputer Interconnection net-
works, Computer, Vol. 20, No. 26, pp. 63-73, 1987.

Reed, D. and Patrick, M., Parallel Iterative Solution of Sparse Linear Systems: Models
and Architectures, Parallel Computing, Vol. 2, No. 1, pp. 45-68, 1985.

Russel, R-M., The Cray-1 Computer System. Comm. ACM 21(1), January 1978, pp.
63 72. [reprinted in CSPE]

Schwartz, J., Ultracomputers, ACM Trans. Prog. Lang. Syst., Vol. 2, pp. 484 521.C,
1980.

Seitz, L., The Cosmic Cube, Comm. ACM 28(1), January 1985, pp. 22 33. [Overview
of research prototype that later became the Intel iPSC-1.]

Siegel, H., Interconnection Networks for Large Scale Parallel Processing: Theory and
Case Studies, Lexington Books, Lexington, MA, 1985.

Siewiorek, D.P, Bell, C.G., and Newell, A., Computer Structures: Principles and
Ezramples. McGraw-Hill, 1982. [A collection of original chapters and primary
source material on historic architectures and networks, including IBM
360, Cray-1, ILLIAC-IV, c.mmp and cm*, PDP-11, Intel 8086, Alohanet, and
Ethernet.|

Stone, H.S., High Performance Computer Architecture. Addison-Wesley, Reading,
MA, 1993 (3rd ed.) [A good book for computational scientists; in addition
to detailed explanations of pipelining and memory organization (suitable
for graduate level courses in computer science) there are chapters on
scientific applications, vector machines, and parallel processing.]|

Trew, A. and Wilson, A., Eds., Past, Present, Parallel: A Survey of Available Parallel
Computing Systems, Springer-Verlag, New York, NY, 1991.

Ware, W., The Ultimate Computer, IEEE Spectrum, Vol. 10, No. 3, pp. 89-91, 1973.

