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� Overview

The advantages of programming in a high level language include abstraction and portability

Abstraction means programmers can describe algorithms in a 
high level� notation that is
independent of details about the machine that will execute the algorithm
 Portability is a
byproduct of abstraction that allows programs to be run on a wide variety of computers as
long as there is a compiler that will translate them for each machine

In most programming situations reality is close to the ideal
 Compilers for many high

level languages are very good at generating e�cient and portable code for typical computer
systems� so programmers are able to express algorithms in high level languages and expect
them to run e�ciently on almost any machine
 There may be a few isolated places where
a programmer who invests a lot of e�ort may be able to write a more e�cient routine in
assembly language �the native language of the machine�� but it is hardly ever worth the e�ort
to write an entire program in assembly language
 Obviously when all or part of a program
is written in assembler it is not as abstract� since assembly language is the language of the
machine and not the language of the application� and it is no longer portable from one
machine to another

It is not necessary to write a lower level program in order to compromise abstraction and

portability
 As a simple example� suppose a program multiplies a value x by �
 The obvious
way to write this in C is 
��x�
 But if a programmer knows the machine that will execute
this program has a slow multiplication instruction� and knows that integers are represented in
binary� she can use the expression 
x �� �� instead
� The resulting program is less abstract

�In C ���x� means �shift x left one bit�� an operation that most machines do very e�ciently� The binary

number system and why shifting left is equivalent to multiplication will be described later in this chapter�

and the C programming language is described in the chapter on programming languages�

�

than the original� since one of its operations is de�ned in machine level terms �shifting a
pattern of bits� instead of mathematical terms �multiplication�
 It is less portable� since it
now runs only on machines that use binary to represent integers �a pretty safe bet� and is
e�cient only on machines that shift bits in a single operation


There are situations where programmers need to use knowledge of the underlying com�
puter system in order to optimize programs written in high level languages� and computa�
tional scientists will often �nd themselves in these situations
 If a program runs for days� or
even weeks� an optimization that improves execution by just a few percent can save many
hours� which translates into real savings if the program runs at a supercomputer center
where the scientist pays for CPU time
 Another factor is that high performance computers
used by computational scientists are much more complicated than other machines� and a
compiler may not be able to translate a program e�ciently without a little help from the
programmer
 A common situation is a loop written in Fortran� which� if written carefully�
can be translated into a single instruction for a vector processor
 Computational scientists
often use the newest machines� and these are the machines most likely to have immature
compilers
 It takes several years experience with real programs for compiler writers to learn
how to develop optimizations that will more fully exploit the capabilities of the underlying
machine� and in many cases the theory behind the optimizations has yet to be worked out

For example� techniques for optimal mapping of independent pieces of a parallel program so
they can be executed simultaneously on di�erent nodes in a parallel processor is an active
area of research in computer science
 Programmers who use parallel processors often need
to allocate tasks themselves using system� dependent library routines to send information
from one task to another
 Knowing how processors are interconnected will have an impact
on how e�ciently messages are passed


Computer scientists used three related terms to describe the general area of low�level
machine organization
 Computer architecture is the study of the components that make
up computer systems and how they are interconnected
 Computer organization is concerned
with the implementation of a computer architecture
 As an example of the di�erence between
architecture and implementation� consider the vector supercomputers from Cray Research

These machines have very similar architectures from a programmer�s point of view� pro�
cessors in these systems have the same number of internal registers �temporary storage�
for both vector and scalar data� they have the same basic instruction set� and operands
in main memory have the same formats
 The systems have very di�erent organizations�
however� since they may have a di�erent number of processors� memory sizes may vary�
operands are transferred from memory to the processor in di�erent ways� and the time to
execute an instruction varies from one system to another
 Computer engineering refers to
the actual construction of a system� lengths of wires� sizes of circuits� cooling and electrical
requirements� etc
 Programmers often use knowledge of a system�s architecture� and some�
times organization� to optimize performance of their programs� but rarely� if ever� are they
concerned with engineering aspects


The goal of this chapter is to introduce the basic concepts of computer architecture and
organization in order to allow computational scientists to recognize when programs are not as
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e�cient as they could be and to transform them so they make better use of the underlying
machine
 We cannot hope to present a comprehensive collection of performance tips for
languages and systems likely to be used in computational science
 Rather we aim to give
enough background information on common structures such as vector processors and cache
memories so you will be able to �a� recognize when your program is not performing near the
capacity of your system� �b� understand performance improvement techniques recommended
by the compiler writers and�or system architects of your system� and �c� decide whether the
bene�ts of increased performance are worth sacri�cing abstraction and portability

Another� closely related� goal is to provide the necessary background in computer archi�

tecture to evaluate competing algorithms to decide which is likely to be the most e�cient for
a given machine� even before they are expressed in a programming language
 Performance
will depend on several factors� for example how data is laid out in memory and the patterns
in which it is accessed
 In many cases an algorithm with worse asymptotic complexity may
turn out to be the best for a certain class of machines because it requires fewer processors
or less memory �see Numerical Linear Algebra �

The chapter begins with an overview of basic computer architecture
 It describes the

main components of a typical system and how they interact
 Section �� is on the architecture
and implementation of modern high performance systems� including vector processors and
parallel processors� readers who are already familiar with basic computer architecture may
want to skip directly to this section
 In both sections we will describe the basic concepts�
introduce performance models� and discuss factors that limit e�cient use of the machines

Programming issues� for example organizing loops so they can be executed more e�ciently
by a vector processor or accessing data structures in ways that are most e�cient for certain
memory systems� are discussed in the chapter on programming languages

� Basic Computer Architecture

The main components in a typical computer system are the processor� memory� input�output
devices� and the communication channels that connect them

The processor is the workhorse of the system� it is the component that executes a program

by performing arithmetic and logical operations on data
 It is the only component that
creates new information by combining or modifying current information
 In a typical system
there will be only one processor� known at the central processing unit� or CPU
 Modern high
performance systems� for example vector processors and parallel processors� often have more
than one processor
 Systems with only one processor are serial processors� or� especially
among computational scientists� scalar processors

Memory is a passive component that simply stores information until it is requested by

another part of the system
 During normal operations it feeds instructions and data to the
processor� and at other times it is the source or destination of data transferred by I�O devices

Information in a memory is accessed by its address
 In programming language terms� one
can view memory as a one�dimensional array M
 A processor�s request to the memory might

�

be 
send the instruction at location M������� or a disk controller�s request might be 
store
the following block of data in locations M��� through M�����
�

Input�output �I�O� devices transfer information without altering it between the external
world and one or more internal components
 I�O devices can be secondary memories� for
example disks and tapes� or devices used to communicate directly with users� such as video
displays� keyboards� and mouses


The communication channels that tie the system together can either be simple links that
connect two devices or more complex switches that interconnect several components and
allow any two of them to communicate at a given point in time
 When a switch is con�gured
to allow two devices to exchange information� all other devices that rely on the switch are
blocked� i
e
 they must wait until the switch can be recon�gured


A common convention used in drawing simple 
stick �gures� of computer systems is the
PMS notation ����
 In a PMS diagram eachmajor component is represented by a single letter�
e
g
 P for processor� M for memory� or S for switch
 A subscript on a letter distinguished
di�erent types of components� e
g
Mp for primary memory and Mc for cache memory
 Lines
connecting two components represent links� and lines connecting more than two components
represent a switch
 Although they are primitive and might appear at �rst glance to be too
simple� PMS diagrams convey quite a bit of information and have several advantages� not
the least of which is they are independent of any particular manufacturer�s notations


As an example of a PMS diagram and a relatively simple computer architecture� Figure �
shows the major components of the original Apple Macintosh personal computer
 The �rst
thing one notices is a single communication channel� known as the bus� that connects all
the other major components
 Since the bus is a switch� only two of these components can
communicate at any time
 When the switch is con�gured for an I�O transfer� for example
from main memory �Mp� to the disk �via Kdisk�� the processor is unable to fetch data or
instructions and remains idle
 This organization is typical of personal computers and low
end workstations� mainframes� supercomputers� and other high performance systems have
much richer �and thus more expensive� structures for connecting I�O devices to internal
main memory that allow the processor to keep working at full speed during I�O operations


��� Processors

The operation of a processor is characterized by a fetch�decode�execute cycle
 In the �rst
phase of the cycle� the processor fetches an instruction from memory
 The address of the
instruction to fetch is stored in an internal register� named the program counter� or PC

As the processor is waiting for the memory to respond with the instruction� it increments
the PC
 This means the fetch phase of the next cycle will fetch the instruction in the next
sequential location in memory �unless the PC is modi�ed by a later phase of the cycle�


In the decode phase the processor stores the information returned by the memory in
another internal register� known as the instruction register� or IR
 The IR now holds a single

�A register is a small piece of memory large enough to hold a single number



Basic Computer Architecture 	

P = processor
M = memory
S = switch
K = controller
X = external device

Pcpu Mp

Xdisplay

Mrom Kvia Kscc

Xkbd Ksio

Xmouse

Kdisk

Sbus

Pcpu: MC68000, 7.8MHz cycle
Mp: primary memory; 128KB or 512KB dynamic RAM
Mrom: 64KB PROM; “toolbox”
Kdisk: proprietary floppy disk controller

Figure �� PMS Diagram of the Apple Macintosh
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machine instruction� encoded as a binary number
 The processor decodes the value in the
IR in order to �gure out which operations to perform in the next stage

In the execution stage the processor actually carries out the instruction
 This step often

requires further memory operations� for example� the instruction may direct the processor
to fetch two operands from memory� add them� and store the result in a third location �the
addresses of the operands and the result are also encoded as part of the instruction�
 At the
end of this phase the machine starts the cycle over again by entering the fetch phase for the
next instruction

Instructions can be classi�ed as one of three major types� arithmetic�logic� data trans�

fer� and control
 Arithmetic and logic instructions apply primitive functions of one or two
arguments� for example addition� multiplication� or logical AND
 In some machines the ar�
guments are fetched from main memory and the result is returned to main memory� but
more often the operands are all in registers inside the CPU
 Most machines have a set of
general purpose registers that can be used for holding such operands
 For example the HP�
PA processor in Hewlett�Packard workstations has �� such registers� each of which holds a
single number

The data transfer instructions move data from one location to another� for example

between registers� or from main memory to a register� or between two di�erent memory
locations
 Data transfer instructions are also used to initiate I�O operations

Control instructions modify the order in which instructions are executed
 They are used

to construct loops� if�then�else constructs� etc
 For example� consider the following DO loop
in Fortran�

DO �� I	�
�

���

�� CONTINUE

To implement the bottom of the loop �at the CONTINUE statement� there might be an
arithmetic instruction that adds � to I� followed by a control instruction that compares I to
	 and branches to the top of the loop if I is less than or equal to 	
 The branch operation is
performed by simply setting the PC to the address of the instruction at the top of the loop

The timing of the fetch� decode� and execute phases depends on the internal construction

of the processor and the complexity of the instructions it executes
 The quantum time unit
for measuring operations is known as a clock cycle
 The logic that directs operations within a
processor is controlled by an external clock� which is simply a circuit that generates a square
wave with a �xed period
 The number of clock cycles required to carry out an operation
determines the amount of time it will take

One cannot simply assume that if a multiplication can be done in tm nanoseconds then

it will take n � tm nanoseconds to perform n multiplications or that if a branch instruction
takes tb nanoseconds the next instruction will begin execution tb nanoseconds following the
branch
 The actual timings depend on the organization of the memory system and the
communication channels that connect the processor to the memory� these are the topics of
the next two sections
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��� Memories

Memories are characterized by their function� capacity� and response times
 Operations on
memories are called reads and writes� de�ned from the perspective of a processor or other
device that uses a memory� a read transfers information from the memory to the other
device� and a write transfers information into the memory
 A memory that performs both
reads and writes is often just called a RAM� for random access memory
 The term 
random
access� means that if location M�x� is accessed at time t� there are no restrictions on the
address of the item accessed at time t � �
 Other types of memories commonly used in
systems are read�only memory� or ROM� and programmable read�only memory� or PROM
�information in a ROM is set when the chips are designed� information in a PROM can be
written later� one time only� usually just before the chips are inserted into the system�
 For
example� the Apple Macintosh� shown in Figure �� had a PROM called the 
toolbox� that
contained code for commonly used operating system functions

The smallest unit of information is a single bit� which can have one of two values
 The

capacity of an individual memory chip is often given in terms of bits
 For example one might
have a memory built from ��Kb ��� kilobit� chips
 When discussing the capacity of an entire
memory system� however� the preferred unit is a byte� which is commonly accepted to be �
bits of information
 Memory sizes in modern systems range from �MB �megabytes� in small
personal computers up to several billion bytes �gigabytes� or GB� in large high�performance
systems
 Note the convention that lower case b is the abbreviation for bit and upper case B
is the symbol for bytes

The performance of a memory system is de�ned by two di�erent measures� the access

time and the cycle time
 Access time� also known as response time or latency� refers to how
quickly the memory can respond to a read or write request
 Several factors contribute to the
access time of a memory system
 The main factor is the physical organization of the memory
chips used in the system
 This time varies from about �� ns in the chips used in personal
computers to �� ns or less for chips used in caches and bu�ers �small� fast memories used for
temporary storage� described in more detail below�
 Other factors are harder to measure

They include the overhead involved in selecting the right chips �a complete memory system
will have hundreds of individual chips�� the time required to forward a request from the
processor over the bus to the memory system� and the time spent waiting for the bus to
�nish a previous transaction before initiating the processor�s request
 The bottom line is
that the response time for a memory system is usually much longer than the access time of
the individual chips

Memory cycle time refers to the minimum period between two successive requests
 For

various reasons the time separating two successive requests is not always �� i
e a memory
with a response time of �� ns cannot satisfy a request every �� ns
 A simple� if old� example
of a memory with a long cycle time relative to its access time is the magnetic core used
in early mainframe computers
 In order to read the value stored in memory� an electronic
pulse was sent along a wire that was threaded through the core
 If the core was in a given
state� the pulse induced a signal on a second wire
 Unfortunately the pulse also erased the
information that used to be in memory� i
e
 the memory had a destructive read�out
 To get

�

around this problem designers built memory systems so that each time something was read
a copy was immediately written back
 During this write the memory cell was unavailable for
further requests� and thus the memory had a cycle time that was roughly twice as long as its
access time
 Some modern semiconductor memories have destructive reads� and there may
be several other reasons why the cycle time for a memory is longer than the access time


Although processors have the freedom to access items in a RAM in any order� in practice
the pattern of references is not random� but in fact exhibits a structure that can be exploited
to improve performance
 The fact that instructions are stored sequentially in memory �recall
that unless there is a branch� PC is incremented by one each time through the fetch�decode�
execute cycle� is one source of regularity
 What this means is that if a processor requests
an instruction from location x at time t� there is a high probability that it will request an
instruction from location x � � in the near future at time t � �
 References to data also
show a similar pattern� for example if a program updates every element in a vector inside a
small loop the data references will be to v���
 v���
 ��� This observation that memory
references tend to cluster in small groups is known as locality of reference


Locality of reference can be exploited in the following way
 Instead of building the entire
memory out of the same material� construct a hierarchy of memories� each with di�erent
capacities and access times
 At the top of the hierarchy there will be a small memory�
perhaps only a few KB� built from the fastest chips
 The bottom of the hierarchy will be
the largest but slowest memory
 The processor will be connected to the top of the hierarchy�
i
e
 when it fetches an instruction it will send its request to the small� fast memory
 If this
memory contains the requested item� it will respond� and the request is satis�ed
 If a memory
does not have an item� it forwards the request to the next lower level in the hierarchy


The key idea is that when the lower levels of the hierarchy send a value from location x
to the next level up� they also send the contents of x� �� x� �� etc
 If locality of reference
holds� there is a high probability there will soon be a request for one of these other items� if
there is� that request will be satis�ed immediately by the upper level memory


The following terminology is used when discussing hierarchical memories�

� The memory closest to the processor is known as a cache
 Some systems have separate
caches for instructions and data� in which case it has a split cache
 An instruction
bu�er is a special cache for instructions that also performs other functions that make
fetching instructions more e�cient


� The main memory is known as the primary memory


� The low end of the hierarchy is the secondary memory
 It is often implemented by a
disk� which may or may not be dedicated to this purpose


� The unit of information transferred between items in the hierarchy is a block
 Blocks
transferred to and from cache are also known as cache lines� and units transferred
between primary and secondary memory are also known as pages
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� Eventually the top of the hierarchy will �ll up with blocks transferred from the lower
levels
 A replacement strategy determines which block currently in a higher level will be
removed to make room for the new block
 Common replacement strategies are random
replacement �throw out any current block at random�� �rst�in��rst�out �FIFO� replace
the block that has been in memory the longest�� and least recently used �LRU� replace
the block that was last referenced the furthest in the past�


� A request that is satis�ed is known as a hit� and a request that must be passed to a
lower level of the hierarchy is a miss
 The percentage of requests that result in hits
determines the hit rate
 The hit rate depends on the size and organization of the
memory and to some extent on the replacement policy
 It is not uncommon to have a
hit rate near ��� for caches on workstations and mainframes


The performance of a hierarchical memory is de�ned by the e�ective access time� which
is a function of the hit ratio and the relative access times between successive levels of the
hierarchy
 For example� suppose the cache access time is ��ns� main memory access time is
���ns� and the cache hit rate is ���
 Then the average time for the processor to access an
item in memory is

teff � ���� � tcache � ���� � tmain

� ����ns

Over a long period of time the system performs as if it had a single large memory with an
��
�ns cycle time� thus the term 
e�ective access time
� With a ��� hit rate the system
performs nearly as well as if the entire memory was constructed from the fast chips used to
implement the cache� i
e
 the average access time is ��
�ns� even though most of the memory
is built using less expensive technology that has an access time of ���ns

Although a memory hierarchy adds to the complexity of a memory system� it does not

necessarily add to the latency for any particular request
 There are e�cient hardware algo�
rithms for the logic that looks up addresses to see if items are present in a memory and to
help implement replacement policies� and in most cases these circuits can work in parallel
with other circuits so the total time spent in the fetch�decode�execute cycle is not lengthened


��� Buses

A bus is used to transfer information between several di�erent modules
 Small and mid�range
computer systems� such as the Macintosh shown in Figure � have a single bus connecting
all major components
 Supercomputers and other high performance machines have more
complex interconnections� but many components will have internal buses

Communication on a bus is broken into discrete transactions
 Each transaction has a

sender and receiver
 In order to initiate a transaction� a module has to gain control of
the bus and become �temporarily� at least� the bus master
 Often several devices have the

��

ability to become the master� for example� the processor controls transactions that transfer
instructions and data between memory and CPU� but a disk controller becomes the bus
master to transfer blocks between disk and memory
 When two or more devices want to
transfer information at the same time� an arbitration protocol is used to decide which will
be given control �rst
 A protocol is a set of signals exchanged between devices in order to
perform some task� in this case to agree which device will become the bus master


Once a device has control of the bus� it uses a communication protocol to transfer the
information
 In an asynchronous �unclocked� protocol the transfer can begin at any time�
but there is some overhead involved in notifying potential receivers that information needs
to be transferred
 In a synchronous protocol transfers are controlled by a global clock and
begin only at well�known times


The performance of a bus is de�ned by two parameters� the transfer time and the overall
bandwidth �sometimes called throughput�
 Transfer time is similar to latency in memories� it
is the amount of time it takes for data to be delivered in a single transaction
 For example�
the transfer time de�nes how long a processor will have to wait when it fetches an instruction
from memory
 Bandwidth� expressed in units of bits per second �bps�� measures the capacity
of the bus
 It is de�ned to be the product of the number of bits that can be transferred in
parallel in any one transaction by the number of transactions that can occur in one second

For example� if the bus has �� data lines and can deliver ��������� packets per second� it
has a bandwidth of ��Mbps


At �rst it may seem these two parameters measure the same thing� but there are subtle
di�erences
 The transfer timemeasures the delay until a piece of data arrives
 As soon as the
data is present it may be used while other signals are passed to complete the communication
protocol
 Completing the protocol will delay the next transaction� and bandwidth takes this
extra delay into account
 Another factor that distinguishes the two is that in many high
performance systems a block of information can be transferred in one transaction� in other
words� the communication protocol may say 
send n items from location x
� There will be
some initial overhead in setting up the transaction� so there will be a delay in receiving the
�rst piece of data� but after that information will arrive more quickly


Bandwidth is a very important parameter
 It is also used to describe processor perfor�
mance� when we count the number of instructions that can be executed per unit time� and
the performance of networks


��� I�O

Many computational science applications generate huge amounts of data which must be
transferred between main memory and I�O devices such as disk and tape
 We will not
attempt to characterize �le I�O in this chapter since the devices and their connections to the
rest of the system tend to be idiosyncratic
 If your application needs to read or write large
data �les you will need to learn how your system organizes and transfers �les and tune your
application to �t that system
 It is worth reiterating� though� that performance is measured
in terms of bandwidth� what counts is the volume of data per unit of time that can be moved
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into and out of main memory


The rest of this section contains a brief discussion of video displays
 These output devices
and their capabilities also vary from system to system� but since scienti�c visualization is
such a prominent part of this book we should introduce some concepts and terminology for
readers who are not familiar with video displays


Most users who generate high quality images will do so on workstations con�gured with
extra hardware for creating and manipulating images
 Almost every workstation manufac�
turer includes in its product line versions of their basic systems that are augmented with
extra processors that are dedicated to drawing images
 These extra processors work in
parallel with the main processor in the workstation
 In most cases data generated on a
supercomputer is saved in a �le and later viewed on a video console attached to a graphics
workstation
 However there are situations that make use of high bandwidth connections
from supercomputers directly to video displays� these are useful when the computer is gen�
erating complex data that should be viewed in 
real time
� For example� a demonstration
program from Thinking Machines� Inc
 allows a user to move a mouse over the image of a
�uid moving through a pipe
 When the user pushes the mouse button� the position of the
mouse is sent to a parallel processor which simulates the path of particles in a turbulent
�ow at this position
 The results of the calculations are sent directly to the video display�
which shows the new positions of the particles in real time
 The net e�ect is as if the user
is holding a container of �uid that is being poured into the pipe


There are many di�erent techniques for drawing images with a computer� but the domi�
nant technology is based on a raster scan
 A beam of electrons is directed at a screen that
contains a quick�fading phosphor
 The beam can be turned on and o� very quickly� and it
can be bent in two dimensions via magnetic �elds
 The beam is swept from left to right
�from the user�s point of view� across the screen
 When the beam is on� a small white dot
will appear on the screen where the beam is aimed� but when it is o� the screen will remain
dark
 To paint an image on the entire screen� the beam is swept across the top row� when it
reaches the right edge� it is turned o�� moved back to the left and down one row� and then
swept across to the right again
 When it reaches the lower right corner� the process repeats
again in the upper left corner


The number of times per second the full screen is painted determines the refresh rate
 If
the rate is too low� the image will �icker� since the bright spots on the phosphor will fade
before the gun comes back to that spot on the next pass
 Refresh rates vary from �� times
per second up to �� times per second


The individual locations on a screen that can be either painted or not are known as pixels
�from 
picture cell��
 The resolution of the image is the number of pixels per inch
 A high
resolution display will have enough pixels in a given area that from a reasonable distance
�an arm�s length away� the gaps between pixels are not visible and a sequence of pixels that
are all on will appear to be a continuous line
 A common screen size is ���� pixels across
and ���� pixels high on a ��� or ��� monitor


The controller for the electron gun decides whether a pixel will be black or white by
reading information from a memory that has one bit per pixel
 If the bit is a �� the pixel

��

will be painted� otherwise it will remain dark
 From the PMS diagram in Figure � you can
see that the display memory on the Macintosh was part of the main memory
 The operating
system set aside a portion of the main memory for displays� and all an application had to do
to paint something on the screen was to write a bit pattern into this portion of memory
 This
was an economical choice for the time �early ����s�� but it came at the cost of performance�
the processor and video console had to alternate accesses to memory
 During periods when
the electron gun was being moved back to the upper left hand corner� the display did not
access memory� and the processor was able to run at full speed
 Once the gun was positioned
and ready for the next scan line� however� the processor and display went back to alternating
memory cycles


With the fall in memory prices and the rising demand for higher performance� modern
systems use a dedicated memory known as a frame bu�er for holding bit patterns that
control the displays
 On inexpensive systems the main processor will compute the patterns
and transfer them to the frame bu�er
 On high performance systems� though� the main
processor sends information to the 
graphics engine�� a dedicated processor that performs
the computations
 For example� if the user wants to draw a rectangle� the CPU can send the
coordinates to the graphics processor� and the latter will �gure out which pixels lie within
the rectangle and turn on the corresponding bits in the frame bu�er
 Sophisticated graphics
processors do all the work required in complex shading� texturing� overlapping of objects
�deciding what is visible and what is not�� and other operations required in �D images


The discussion so far has dealt only with black and white images
 Color displays are
based on the same principles� a raster scan illuminates regions on a phosphor� with the
information that controls the display coming from a frame bu�er
 However� instead of one
gun there are three� one for each primary color
 When combining light� the primary colors
are red� green� and blue� which is why these displays are known as RGB monitor
� Since we
need to specify whether or not each gun should be on for each pixel� the frame bu�er will
have at least three bits per pixel
 To have a wide variety of colors� though� it is not enough
just to turn a gun on or o�� we need to control its intensity
 For example� a violet color can
be formed by painting a pixel with the red gun at ��� of full intensity� green at ���� and
blue at ���


Typically a system will divide the range of intensities into �	� discrete values� which
means the intensity can be represented by an ��bit number
 � bits times � guns means ��
bits are required for each pixel
 Recall that high resolution displays have ���� rows of ����
pixels each� for a total of �
� million pixels
 Dedicating �� bits to each pixel would require
almost ��MB of RAM for the frame bu�er alone
 What is done instead is to create a color
map with a �xed number of entries� typically �	�
 Each entry in the color map is a full ��

�Combining primaries to make secondary and other colors is very di�erent for additive� light�based colors

than it is for subtractive� paint�based colors� With paints� the primaries are red� blue� and yellow� As an

example� combining red and yellow paint in equal proportions creates an orange paint� To create an orange

light� however� one needs to combine two parts red� one part green� and no blue� X windows users who are

curious to see how RGB primaries are combined to make their favorite colors can look at the system color

database� usually in a �le named �usr�lib�X���rgb�txt�
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bits wide
 Each pixel only needs to identify a location in the map that contains its color� and
since a color map of �	� entries requires only � bits per pixel to specify one of the entries
there is a savings of �� bits per pixel
 The drawback is that only �	� di�erent colors can be
displayed in any one image� but this is enough for all applications except those that need to
create highly realistic images


��� Operating Systems

The user�s view of a computer system is of a complex set of services that are provided by a
combination of hardware �the architecture and its organization� and software �the operating
system�
 Attributes of the operating system also a�ect the performance of user programs


Operating systems for all but the simplest personal computers are multi�tasking operating
systems
 This means the computer will be running several jobs at once
 A program is a static
description of an algorithm
 To run a program� the system will decide how much memory
it needs and then start a process for this program� a process �also known as a task� can be
viewed as a dynamic copy of a program
 For example� the C compiler is a program
 Several
di�erent users can be compiling their code at the same time� there will be a separate process
in the system for each of these invocations of the compiler


Processes in a multi�tasking operating system will be in one of three states
 A process is
active if the CPU is executing the corresponding program
 In a single processor system there
will be only one active process at any time
 A process is idle if it is waiting to run
 In order
to allocate time on the CPU fairly to all processes� the operating system will let a process
run for a short time �known as a time slice� typically around ��ms� and then interrupt it�
change its status to idle� and install one of the other idle tasks as the new active process

The previous task goes to the end of a process queue to wait for another time slice


The third state for a process is blocked
 A blocked process is one that is waiting for some
external event
 For example� if a process needs a piece of data from a �le� it will call the
operating system routine that retrieves the information and then voluntarily give up the
remainder of its time slice
 When the data is ready� the system changes the process� state
from blocked to idle� and it will be resumed again when its turn comes


The predominant operating systems for workstations is Unix� developed in the ����s at
Bell Labs and made popular in the ����s by the University of California at Berkeley
 Even
though there may be just one user� and that user is executing only one program �e
g
 a text
editor�� there will be dozens of tasks running
 Many Unix services are provided by small
systems programs known as daemons that are dedicated to one special purpose
 There are
daemons for sending and receiving mail� using the network to �nd �les on other systems�
and several other jobs


The fact that there may be several processes running in a system at the same time as
your computational science application has rami�cations for performance
 One is that it
makes it slightly more di�cult to measure performance
 You cannot simply start a program�
look at your watch� and then look again when the program stops to measure the time spent

This measure is known as real time or 
wall�clock time�� and it depends as much on the

��

number of other processes in the system as it does on the performance of your program

Your program will take longer to run on a heavily�loaded system since it will be competing
for CPU cycles with those other jobs
 To get an accurate assessment of how much time is
required to run your program you need to measure CPU time
 Unix and other operating
systems have system routines that can be called from an application to �nd out how much
CPU time has been allocated to the process since it was started


Another impact of having several other jobs in the process queue is that as they are
executed they work themselves into the cache� displacing your program and data
 During
your application�s time slice its code and data will �ll up the cache
 But when the time slice
is over and a daemon or other user�s program runs� its code and data will soon replace yours�
so that when yours resumes it will have a higher miss rate until it reloads the code and
data it was working on when it was interrupted
 This period during which your information
is being moved back into the cache is known as a reload transient
 The longer the interval
between time slices and the more processes that run during this interval the longer the reload
transient


Supercomputers and parallel processors also use variants of Unix for their runtime envi�
ronments
 You will have to investigate whether or not daemons run on the main processor
or a 
front end� processor and how the operating system allocates resources
 As an example
of the range of alternatives� on an Intel Paragon XPS with 	� processors some processors
will be dedicated to system tasks �e
g
 �le transfers� and the remainder will be split among
users so that applications do not have to share any one processor
 The MasPar ���� consists
of a front�end �a DEC workstation� that handles the system tasks and ���� processors for
user applications
 Each processor has its own ��KB RAM
 More than one user process can
run at any one time� but instead of allocating a di�erent set of processors to each job the
operating system divides up the memory
 The memory is split into equal size partitions� for
example �KB� and when a job starts the system �gures out how many partitions it needs

All ���� processors execute that job� and when the time slice is over they all start working
on another job in a di�erent set of partitions


��� Data Representations

Another important interaction between user programs and computer architecture is in the
representation of numbers
 This interaction does not a�ect performance as much as it does
portability
 Users must be extremely careful when moving programs and�or data �les from
one system to another because numbers and other data are not always represented the same
way
 Recently programming languages have begun to allow users to have more control over
how numbers are represented and to write code that does not depend so heavily on data
representations that it fails when executed on the 
wrong� system


The binary number system is the starting point for representing information
 All items in
a computer�s memory � numbers� characters� instructions� etc
 � are represented by strings of
��s and ��s
 These two values designate one of two possible states for the underlying physical
memory
 It does not matter to us which state corresponds to � and which corresponds to ��
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or even what medium is used
 In an electronic memory� � could stand for a positively charged
region of semiconductor and � for a neutral region� or on a device that can be magnetized a
� would represent a portion of the surface that has a �ux in one direction� while a � would
indicate a �ux in the opposite direction
 It is only important that the mapping from the set
f���g to the two states be consistent and that the states can be detected and modi�ed at
will


Systems usually deal with �xed�length strings of binary digits
 The smallest unit of
memory is a single bit� which holds a single binary digit
 The next largest unit is a byte� now
universally recognized to be eight bits �early systems used anywhere from six to eight bits
per byte�
 A word is �� bits long in most workstations and personal computers� and �� bits
in supercomputers
 A double word is twice as long as a single word� and operations that use
double words are said to be double precision operations


Storing a positive integer in a system is trivial� simply write the integer in binary and
use the resulting string as the pattern to store in memory
 Since numbers are usually stored
one per word� the number is padded with leading ��s �rst
 For example� the number 	� is
represented in a ���bit word by the pattern ����������������


The meaning of an n�bit string s when it is interpreted as a binary number is de�ned by
the formula� x � s���n��� s���n��� � � �� sn������ sn���� i
e
 bit number i has weight�

x �
nX

i

si � �
n�i

Compiler writers and assembly language programmers often take advantage of the binary
number system when implementing arithmetic operations
 For example� if the pattern of
bits is 
shifted left� by one� the corresponding number is multiplied by two
 A left shift is
performed by moving every bit left and inserting ��s on the right side
 In an ��bit system�
for example� the pattern �������� represents the number �� if this pattern is shifted left�
the resulting pattern is ��������� which is the representation of the number ��
 In general�
shifting left by n bits is equivalent to multiplying by �n


Shifts such as these can be done in one machine cycle� so they are much faster than
multiplication instructions� which usually takes several cycles
 Other 
tricks� are using a
right shift to implement integer division by a power of �� in which the result is an integer
and the remainder is ignored �e
g
 �	 � � � �� and taking the modulus or remainder with
respect to a power of � �see problem ��


A fundamental relationship about binary patterns is that there are �n distinct n�digit
strings
 For example� for n � � there are �� � �	� di�erent strings of ��s and ��s
 From this
relationship it is easy to see that the largest integer that can be stored in an n�bit word is
�n � �� the �n patterns are used to represent the �n integers in the interval ��� � � � �n � ��


An over�ow occurs when a system generates a value greater than the largest integer
 For
example� in a ���bit system� the largest positive integer is ��� � �
 � ������������	
 If a
program tries to add ������������� and ������������� it will cause an over�ow
 Right away
we can see one source of problems that can arise when moving a program from one system

��

to another� if the word size is smaller on the new system a program that runs successfully
on the original system may crash with an over�ow error on the new system

There are two di�erent techniques for representing negative values
 One method is to

divide the word into two �elds� i
e
 represent two di�erent types of information within the
word
 We can use one �eld to represent the sign of the number� and the other �eld to
represent the value of the number
 Since a number can be just positive or negative� we
need only one bit for the sign �eld
 Typically the leftmost bit represents the sign� with
the convention that a � means the number is negative and a � means it is positive
 This
type of representation is known as a sign�magnitude representation� after the names of the
two �elds
 For example� in a ���bit sign�magnitude system� the pattern ����������������
represents the number and the pattern ���������������� represents �	


The other technique for representing both positive and negative integers is known as two�s
complement
 It has two compelling advantages over the sign�magnitude representation� and
is now universally used for integers� but as we will see below sign�magnitude is still used
to represent real numbers
 The two�s complement method is based on the fact that binary
arithmetic in �xed�length words is actually arithmetic over a �nite cyclic group
 If we ignore
over�ows for a moment� observe what happens when we add � to the largest possible number
in an n�bit system �this number is represented by a string of n ��s��

���� � � � ����
� �

����� � � � ����

The result is a pattern with a leading � and n ��s
 In an n�bit system only the low order n
bits of each result are saved� so this sum is functionally equivalent to �
 Operations that lead
to sums with very large values 
wrap around� to �� i
e
 the system is a �nite cyclic group

Operations in this group are de�ned by arithmetic modulo �n

For our purposes� what is interesting about this type of arithmetic is that �n� which is

represented by a � followed by n ��s� is equivalent to �� which means �n � x � �x for all x
between � and �n � �
 A simple 
trick� that has its roots in this fact can be applied to the
bit pattern of a number in order to calculate its additive inverse� if we invert every bit �turn
a � into a � and vice versa� in the representation of a number x and then add �� we come
up with the representation of �x
 For example� the representation of 	 in an ��bit system is
��������
 Inverting every bit and adding � to the result gives the pattern ��������
 This
is also the representation of �	�� but in arithmetic modulo �� we have so this pattern is a
perfectly acceptable representation of �	 �see problem ��


In practice we divide all n�bit patterns into two groups
 Patterns that begin with �
represent the positive integers � � x � �n��� � and patterns beginning with � represent the
negative integers ��n�� � x � �
 To determine which integer is represented by a pattern
that begins with a �� compute its complement �invert every bit and add ��
 For example� in
an ��bit two�s complement system the pattern �������� represents � since the complement is
�������� � � � ��������� � ����
 Note that the leading bit determines the sign� just as in
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a sign�magnitude system� but one cannot simply look at the remaining bits to ascertain the
magnitude of the number
 In a sign�magnitude system� the same pattern represents ���

The �rst step in de�ning a representation for real numbers is to realize that binary nota�

tion can be extended to cover negative powers of two� e
g
 the string 
���
���� is interpreted
as

�� �� � � � �� � �� ��� � �� ��� � �� ��� � ����	

Thus a straightforward method for representing real numbers would be to specify some
location within a word as the 
binary point� and give bits to the left of this location weights
that are positive powers of two and bits to the right weights that are negative powers of two

For example� in a ���bit word� we can dedicate the rightmost 	 bits for the fraction part
and the leftmost �� bits for the whole part
 In this system� the representation of �
��	 is
���������������� �note there are leading ��s to pad the whole part and trailing ��s to pad
the fraction part�
 This representation� where there is an implied binary point at a �xed
location within the word� is known as a �xed point representation

There is an obvious tradeo� between range and precision in �xed point representations


n bits for the fraction part means there will be �n numbers in the system between any two
successive integers
 With 	 bit fractions there are �� numbers in the system between any
two integers� e
g
 the numbers between 	 and � are 	 �

��
�	
����	�� 	 �

��
�	
����	�� etc
 To

allow more precision� i
e
 smaller divisions between successive numbers� we need more bits
in the fraction part
 The number of bits in the whole part determines the magnitude of
the largest positive number we can represent� just as it does for integers
 With �� digits
in the whole part� as in the example above� the largest number we can represent in �� bits
is ������������������ � ���������	�� 
 Moving one bit from the whole part to the fraction
part in order to increase precision cuts the range in half� and the largest number is now
������������������ � ����������	�� 

To allow for a larger range without sacri�cing precision� computer systems use a technique

known as �oating point
 This representation is based on the familiar 
scienti�c notation� for
expressing both very large and very small numbers in a concise format as the product of a
small real number and a power of ��� e
g
 ������ ����
 This notation has three components�
a base ��� in this example�� an exponent �in this case ���� and a mantissa ��
����
 In
computer systems� the base is either � or ��
 Since it never changes for any given computer
system it does not have to be part of the representation� and we need only two �elds to
specify a value� one for the mantissa and one for the exponent

As an example of how a number is represented in �oating point� consider again the

number �
��	
 In binary� it is

������� � �� � ������� � ��

If a ���bit system has a ���bit mantissa and ��bit exponent� the number would be represented
by the string ���������� ������
 The mantissa is stored in the �rst ten bits �padded on the
right with trailing ��s�� and the exponent is stored in the last six bits


��

0.0

ε ω

Figure �� Distribution of Floating Point Numbers

As the above example illustrates� computers transform the numbers so the mantissa is
a manageable number
 Just as ����� � ���� is preferred to ����� � ���� or ������ � ���� in
scienti�c notation� in binary the mantissa should be between ����� � � � and ����� � � �
 When
the mantissa is in this range it is said to be normalized
 The de�nition of the normal
form varies from system to system� e
g
 in some systems a normalized mantissa is between
������ � � � and ������ � � �


Since we need to represent both positive and negative real numbers� the complete rep�
resentation for a real number in a �oating point format has three �elds� a one�bit sign� a
�xed number of bits for the mantissa� and the remainder of the bits for the exponent
 Note
that the exponent is an integer� and that this integer can be either positive or negative�
e
g
 we will want to represent very small numbers such as ��� � �����
 Any method such
as two�s complement that can represent both positive and negative integers can be used
within the exponent �eld
 The sign bit at the front of the number determines the sign of the
entire number� which is independent of the sign of the exponent� e
g
 it indicates whether
the number is ���� ����� or ����� �����


In the past every computer manufacturer used their own �oating point representation�
which made it a nightmare to move programs and datasets from one system to another

A recent IEEE standard is now being widely adopted and will add stability to this area of
computer architecture
 For ���bit systems� the standard calls for a ��bit sign� ��bit exponent�
and ���bit mantissa
 The largest number that can be represented is ���� � ����� and the
smallest positive number �closest to �
�� is ����� � ����	
 Details of the standard are
presented in an appendix to this chapter


Figure � illustrates the numbers that can be stored in a typical computer system with
a �oating point representation
 The �gure shows three disjoint regions� positive numbers
� � �� �
�� and negative numbers �� � n � ��
 � is the largest number that can be stored
in the system� in the IEEE standard representation � � ����
 � is the smallest positive
number� which is ����	 in the IEEE standard


Programmers need to be aware of several important attributes of the �oating point repre�
sentation that are illustrated by this �gure
 The �rst is the magnitude of the range between
�� and � 
 There are about ���� integers in this range
 However there are only ��� � ��


di�erent ���bit patterns
 What this means is there are numbers in the range that do not have
representations
 Whenever a calculation results in one of these numbers� a round�o� error
will occur when the system approximates the result by the nearest �we hope� representable

Basic Computer Architecture ��

number
 The arithmetic circuitry will produce a binary pattern that is close to the desired
result� but not an exact representation
 An interesting illustration of just how common these
round�o� errors are is the fact that � does not have a �nite representation in binary� but is
instead the in�nitely repeating pattern ��������������� � � ��


The next important point is that there is a gap between �� the smallest positive number�
and �
�
 A round�o� error in a calculation that should produce a small non�zero value but
instead results in �
� is called an under�ow
 One of the strengths of the IEEE standard
is that it allows a special denormalized form for very small numbers in order to stave o�
under�ows as long as possible
 This is why the exponent in the largest and smallest positive
numbers are not symmetrical
 Without denormalized numbers� the smallest positive number
in the IEEE standard would be around �����


Finally� and perhaps most important� is the fact that the numbers that can be represented
are not distributed evenly throughout the range
 Representable numbers are very dense
close to �
�� but then grow steadily further apart as they increase in magnitude
 The dark
regions in Figure � correspond to parts of the number line where representable numbers
are packed close together
 It is easy to see why the distribution is not even by asking
what two numbers are represented by two successive values of the mantissa for any given
exponent
 To make the calculations easier� suppose we have a ���bit system with a ��
bit mantissa and ��bit exponent
 No matter what the exponent is� the distance between
any two successive values of the mantissa� e
g
 between ���������� and ���������� � will
be ���������� � ��������
 For numbers closest to �
�� the exponent will be a negative
number� e
g
 ����� and the distance between two successive �oating point numbers will be
���������� � ���� � ������ � ����� � ��� � �����
 At the other end of the scale� when
exponents are large� the distance between two numbers will be approximately ����� namely
���������� � ���� � ������ � ���� � ��� � ���	


��	 Performance Models

The most widely recognized aspect of a machine�s internal organization that relates to per�
formance is the clock cycle time� which controls the rate of internal operations in the CPU
�Section �
��
 A shorter clock cycle time� or equivalently a larger number of cycles per
second� implies more operations can be performed per unit time


For a given architecture� it is often possible to rank systems according to their clock
rates
 For example� the HP �������	 and �������	 workstations have basically the same
architecture� meaning they have the same instruction set and� in general� appear to be the
same system as far as compiler writers are concerned
 The ��	 has a ��MHz clock� while the
��	 has a ��MHz clock� and indeed the ��	 has a higher performance on most programs


There are several reasons why simply comparing clock cycle times is an inadequate mea�
sure of performance
 One reason is that processors don�t operate 
in a vacuum�� but rely on
memories and buses to supply information
 The size and access times of the memories and
the bandwidth of the bus all play a major role in performance
 It is very easy to imagine
a program that requires a large amount of memory running faster on an HP ��	 that has

��

Machine A Machine B

L: load X,V[i] (2) L: load X,V[i] (2)

mpy 3,X (4) mov X,Y (2)

store X,V[i] (2) shl X,1 (2)

dbr L,i (2) add Y,X (2)

store X,V[i] (2)

dbr L,i (2)

total cycles: 10 total cycles: 12

Table ��

a larger cache and more main memory than a ��	
 We will return to the topic of memory
organization and processor� memory interconnection in later sections on vector processors
and parallel processors since these two aspects of systems organization are even more crucial
for high performance in those systems


A second reason clock rate by itself is an inadequate measure of performance is that it
doesn�t take into account what happens during a clock cycle
 This is especially true when
comparing systems with di�erent instruction sets
 It is possible that a machine might have
a lower clock rate� but because it requires fewer cycles to execute the same program it would
have higher performance
 For example� consider two machines� A and B� that are almost
identical except that A has a multiply instruction and B does not
 A simple loop that
multiplies a vector by a scalar �the constant � in this example� is shown in the table below

The number of cycles for each instruction is given in parentheses next to the instruction


The �rst instruction loads an element of the vector into an internal processor register X
 Next�
machine A multiplies the vector element by �� leaving the result in the register
 Machine B
does the same operation by shifting and adding� i
e
 �x � �x� x
 B copies the contents of X
to another register Y� shifts X left one bit �which multiplies it by ��� and then adds Y� again
leaving the result in X
 Both machines then store the result back into the vector in memory
and branch back to the top of the loop if the vector index is not at the end of the vector
�the comparison and branch are done by the dbr instruction�
 Machine A might be slightly
slower than B� but since it takes fewer cycles it will execute the loop faster
 For example if
A�s cycle time is � MHz �
���s per cycle� and B�s cycle time is �� MHz �
���s per cycle� A
will execute one pass through the loop in �
��s but B will require �
��s
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As a historical note� microprocessor and microcomputer designers in the ����s tended
to build systems with instruction sets like those of machine A above
 The goal was to
include instructions with a large 
semantic content�� e
g
 multiplication is relatively more
complex than loading a value from memory or shifting a bit pattern
 The payo� was in
reducing the overhead to fetch instructions� since fewer instructions could accomplish the
same job
 By the ����s� however� it became widely accepted that instruction sets such as
those of machine B were in fact a better match for VLSI chip technology
 The move toward
simpler instructions became known as RISC� for Reduced Instruction Set Computer
 A
RISC has fewer instructions in its repertoire� but more importantly each instruction is very
simple
 The fact that operations are so simple and so uniform leads to some very powerful
implementation techniques� such as pipelining� and opens up room on the processor chip
for items such as on�chip caches or multiple functional units� e
g
 a CPU that has two or
more arithmetic units
 We will discuss these types of systems in more detail later� in the
section on superscalar designs �Section �
	
��
 Another bene�t to simple instructions is that
cycle times can also be much shorter� instead of being only moderately faster� e
g ��MHz
vs
 �MHz as in the example above� cycle times on RISC machines are often much faster�
so even though they fetch and execute more instructions they typically outperform complex
instruction set �CISC� machines designed at the same time

In order to compare performance of two machines with di�erent instruction sets� and even

di�erent styles of instruction sets �e
g
 RISC vs
 CISC�� we can break the total execution
time into constituent parts ����
 The total time to execute any given program is the product
of the number of machine cycles required to execute the program and the processor cycle
time�

T � nc � tc

The number of cycles executed can be rewritten as the number of instructions executed times
the average number of cycles per instruction�

T � ni �
nc
ni
� tc

The middle factor in this expression describes the average number of machine cycles the
processor devotes to each instruction
 It is the number of cycles per instruction� or CPI

The basic performance model for a single processor computer system is thus

T � ni � CPI� tc

where

CPI �
nc
ni

The three factors each describe di�erent attributes of the execution of a program
 The
number of instructions depends on the algorithm� the compiler� and to some extent the in�
struction set of the machine
 Total execution time can be reduced by lowering the instruction

��

count� either through a better algorithm �one that executes an inner loop fewer times� for
example�� a better compiler �one that generates fewer instructions for the body of the loop��
or perhaps by changing the instruction set so it requires fewer instructions to encode the
same algorithm
 As we saw earlier� however� a more compact encoding as a result of a richer
instruction set does not always speed up a program since complex instructions require more
cycles
 The interaction between instruction complexity and the number of cycles to execute
a program is very involved� and it is hard to predict ahead of time whether adding a new
instruction will really improve performance


The second factor in the performance model is CPI
 At �rst it would seem this factor is
simply a measure of the complexity of the instruction set� simple instructions require fewer
cycles� so RISC machines should have lower CPI values
 That view is misleading� however�
since it concerns a static quantity
 The performance equation describes the average number of
cycles per instruction measured during the execution of a program
 The di�erence is crucial

Implementation techniques such as pipelining allow a processor to overlap instructions by
working on several instructions at one time
 These techniques will lower CPI and improve
performance since more instructions are executed in any given time period
 For example�
the average instruction in a system might require three machine cycles� one to fetch it
from cache� one to fetch its operands from registers� and one to perform the operation and
store the result in a register
 Based on this static description one might conclude the CPI
is �
�� since each instruction requires three cycles
 However� if the processor can juggle
three instructions at once� for example by fetching instruction i� � while it is locating the
operands for instruction i � � and executing instruction i� then the e�ective CPI observed
during the execution of the program is just a little over �
� �Figure ��
 Note that this is
another illustration of the di�erence between speed and bandwidth
 Overall performance of
a system can be improved by increasing bandwidth� in this case by increasing the number of
instructions that �ow through the processor per unit time� without changing the execution
time of the individual instructions


The third factor in the performance model is the processor cycle time tc
 This is usually
in the realm of computer engineering� a better layout of the components on the surface
of the chip might shorten wire lengths and allow for a faster clock� or a di�erent material
�e
g
 gallium arsenide vs
 silicon based semiconductors� might have a faster switching time

However� the architecture can also a�ect cycle time
 One of the reasons RISC is such a good
�t for current VLSI technology is that if the instruction set is small� it requires less logic
to implement
 Less logic means less space on the chip� and smaller circuits run faster and
consume less power ����
 Thus the design of the instruction set� the organization of pipelines�
and other attributes of the architecture and its implementation can impact cycle time


We conclude this section with a few remarks on some metrics that are commonly used to
describe the performance of computer systems
 MIPS stands for 
millions of instructions
per second
� With the variation in instruction styles� internal organization� and number of
processors per system it is almost meaningless for comparing two systems
 As a point of
reference� the DEC VAX ������ executed approximately one million instructions per second

You may see a system described as having performance rated at 
X VAX MIPS
� This is
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A processor can overlap the execution of several instructions. In this
example the first instruction is fetched during the first cycle. In the sec-
ond cycle, instruction 1 is handed to the part of the processor that pre-
pares operands and the second instruction is fetched from memory. In
cycles 3 through n the processor is working on three instructions at a
time. Note also that one instruction is completed every cycle.  cy-
cles are required to execute n instructions, so the average number of
cycles per instruction is .

n 2+

CPI n 2+( ) n⁄( ) 1.0≈=

Figure �� Pipelined execution

a measure of performance normalized to VAX ������ performance
 What this means is
someone ran a program on the VAX� then ran the same program on the other system� and
the ratio is X
 The term 
native MIPS� refers to the number of millions of instructions of
the machine�s own instruction set that can be executed per second


MFLOPS �pronounced 
mega�ops�� stands for 
millions of �oating point operations
per second
� This is often used as a 
bottom�line� �gure
 If you know ahead of time how
many operations a program needs to perform� you can divide the number of operations
by the execution time to come up with a MFLOPS rating
 For example� the standard
algorithm for multiplying n � n matrices requires �n� � n operations �n� inner products�
with n multiplications and n � � additions in each product�
 Suppose you compute the
product of two ��� � ��� matrices in �
�	 seconds
 Your computer achieved

�������� � ��������	 � 	� ���� ��� ops�sec � 	���� MFLOPS

Obviously this type of comparison ignores the overhead involved in setting up loops� checking
terminating conditions� and so on� but as a 
bottom line� it gets to the point� what you care
about �in this example� is how long it takes to multiply two matrices� and if that operation is
a major component of your research it makes sense to compare machines by how fast they can
multiply matrices
 A standard set of reference programs known as LINPACK �linear algebra
package� is often used to compare systems based on their MFLOPS ratings by measuring
execution times for Gaussian elimination on ��� � ��� matrices ���

The term 
theoretical peak MFLOPS� refers to how many operations per second would be

��

possible if the machine did nothing but numerical operations
 It is obtained by calculating the
time it takes to perform one operation and then computing how many of them could be done
in one second
 For example� if it takes � cycles to do one �oating point multiplication� the
cycle time on the machine is �� nanoseconds� and arithmetic operations are not overlapped
with one another� it takes ���ns for one multiplication� and

�� ���� ���� ��� nanosec

� second
�
� multiplication

��� nanosec
� ���	 � ��� multiplication�sec

so the theoretical peak performance is �
�	 MFLOPS
 Of course� programs are not just long
sequences of multiply and add instructions� so a machine rarely comes close to this level of
performance on any real program
 Most machines will achieve less than ��� of their peak
rating� but vector processors or other machines with internal pipelines that have an e�ective
CPI near �
� can often achieve ��� or more of their theoretical peak on small programs

Using metrics such as CPI� MIPS� or MFLOPS to compare machines depends heavily

on the programs used to measure execution times
 A benchmark is a program written
speci�cally for this purpose
 There are several well�known collections of benchmarks
 One
that is be particularly interesting to computational scientists is LINPACK� which contains
a set of linear algebra routines written in Fortran
 MFLOPS ratings based on LINPACK
performance are published regularly ���
 Two collections of a wider range of programs are
SPEC �System Performance Evaluation Cooperative� and the Perfect Club� which is oriented
toward parallel processing
 Both include widely used programs such as a C compiler and
a text formatter� not just small special purpose subroutines� and are useful for comparing
systems such as high performance workstations that will be used for other jobs in addition
to computational science modelling


� High Performance Computer Architecture

As described in Section �
� the performance of a computer system is de�ned by three factors

The time to execute a program is a function of the number of instructions to execute� the
average number of clock cycles required per instruction� and the clock cycle time�

T � ni � CPI� tc

Lowering the clock cycle time is mostly a matter of engineering� through the use of more
advanced materials or production techniques that allow the construction of smaller �and
thus faster and more e�cient� circuits
 In this section we will survey several techniques for
designing architectures that improve the other two factors

The common thread that runs through all these techniques is parallelism� which is

achieved by replicating basic components in the system
 For example� an architect may
use four adder�multiplier units instead of one inside the CPU� or connect two or more mem�
ories to the CPU in order to increase bandwidth� or connect two or more processors to one
memory in order to increase the number of instructions executed per unit time� or even
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replicate the entire computer �processor� memory� and I�O connections� in a network of
machines that all work together on the same program
 Parallelism has existed in the minds
of computer architects from the time of Charles Babbage in the early ��th century� and has
been manifested in a large number of machines in a variety of ways that might be classi�ed
in distinct levels �����

� Job level parallelism� the highest level of parallelism� is more of interest to administra�
tors than individual users
 What is most important from this point of view is that a
lab or computer center execute as many jobs as possible in any given time period
 This
can be accomplished by purchasing more computer systems so more jobs are running
at any one time� even though any one user�s job will not run faster
 Once again we see
a distinction between throughput �number of jobs per day� and latency �the time to
execute a program�


� Program level parallelism occurs when a single program is broken down into constituent
parts
 For example� the matrix product can be computed by breaking C into quadrants
and having four processors compute each quadrant from the corresponding sections of
A and B �also refer to the Chapter on Numerical Algebra �
 The entire product will
be computed roughly four times faster since each processor can work independently of
the others


� Instruction level parallelism is mostly invisible to users� i
e
 it is below the level of
the architecture and in the domain of computer organization
 Pipelines� introduced
brie�y in Section �
� and discussed in more detail below� are the most common way of
implementing this type of parallelism


� Arithmetic and bit level parallelism is the lowest level and is mainly of concern to
designers of arithmetic�logic units inside the CPU
 For example� a ���bit sum can be
computed by adding all �� bits at once �the carry into the most signi�cant bits can
be predicted and computed almost as fast as the sum of any two bits�� or for some
reason the architect may decide to break the operation into ��bit pieces and compute
the entire sum in �� cycles


Job level parallelism is also exploited within a single computer by treating a job or several
jobs as a collection of independent tasks
 For example� several jobs may reside in memory at
the same time with only one in execution at any given time
 When that job requires some
I�O services� such as a read from disc� the operation is initiated� the job requiring the service
is suspended� and another job is put into execution state
 At some future time� after the I�O
operation has completed and the data is available� control will pass back to the original job
and execution will continue
 In this example� the CPU and the I�O system are functioning
in parallel

Parallelism at the program level is generally manifested in two ways� independent sections

of a given program� and individual iterations of a loop where there are no dependencies
between iterations
 This type of parallelism may be exploited by multiple processors or

��

multiple functional units
 For example� the following code segment calls for the calculation
of n sums�

DO �� I	�
N

A�I
 	 B�I
 � C �I


�� CONTINUE

The sums are independent� i
e
 the calculation of bi � ci does not depend on bj � cj for any
j � i
 That means they can be done in any order� and in particular a machine with n
processors could do them all at the same time

Obviously� more complex segments may also be treated in parallel depending on the

sophistication of the architecture
 This is the level of parallelism with which we will primarily
be concerned in this book

The next lower level of parallelism is at the instruction level� where individual instruc�

tions may be overlapped or a given instruction may be decomposed into suboperations with
the suboperations overlapped
 In the �rst case� for example� it is common to �nd a load
instruction� which copies a value from memory to an internal CPU register� overlapped with
an arithmetic instruction
 The second situation is exempli�ed by the ubiquitous pipeline
that has become the mainstay for arithmetic processing
 In general� programmers need not
concern themselves with this level of parallelism� since compilers are adept at reorganizing
programs to exploit this form of parallelism
 Nevertheless� one should keep in mind that
the quality of compilers varies greatly from system to system and one may have to structure
the code in particular ways to help the compiler make maximum use of the hardware
 For
example� as we will see below� Cray supercomputers are most e�cient when vector lengths
are �� or smaller� and rearranging programs to operate on small segments of long vectors
can improve performance
 In addition� awareness of the internal structure of a computer is
often necessary when analyzing the performance of a program

A concept related to the level of parallelism is the granularity of parallel tasks
 A large

grain system is one in which the operations that run in parallel are fairly large� on the order
of entire programs
 Small grain parallel systems divide programs into very small pieces� in
some cases only a few instructions
 The example used above of a processor that calculates
n sums in parallel is an example of very �ne grain parallelism

When designing a machine the architect must make a decision to use a relatively small

number of powerful processors or a large number of simple processors to achieve the de�
sired performance
 The latter approach is often termed massively parallel
� At one extreme
are the systems built by Cray Research Inc
 that consist of two to sixteen very power�
ful vector processors� at the other extreme are arrays of tens of thousands of very simple
processors� exempli�ed by the CM�� from Thinking Machines Corporation� which has up
to �	�	�� single�bit processors
 The motivation for a small number of powerful processors
is that they are simpler to interconnect and they lend themselves to an implementation
of memory organizations that make the systems relatively easy to program
 On the other

�What constitutes �massive� parallelism is not clearly de�ned� Most authors reserve the term for systems

with 	


 or more individual processors�
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hand such processors are very expensive to build� power and cool
 Some architects have
used commodity microprocessors which o�er great economies of scale at the expense of more
complex interconnection strategies
 With the rapid increase in the power of microprocessors�
arrays of a few hundred processors have the same theoretical peak performance of the fastest
machines o�ered by Cray Research Inc

This section of the book explores the design space of high performance machines� in�

cluding single processor vector machines� parallel systems with a few powerful processors�
and massively parallel architectures
 Section �
� introduces a popular taxonomy of paral�
lel systems
 The next three sections cover major concepts of parallel systems organization�
including pipelining� schemes for interconnecting processors and memories� and scalability

Section �
	 is a survey of the major types of parallel machines� with an emphasis on sys�
tems that have been used in computational science
 Finally� Section �
� present models for
analyzing the performance of parallel computer systems


��� Flynn
s Taxonomy

It is safe to say that as of this writing there is no completely satisfactory characterization of
the di�erent types of parallel systems
 The most popular taxonomy was de�ned by Flynn
in ���� ���
 The classi�cation is based on the notion of a stream of information
 Two types
of information �ow into a processor� instructions and data
 Conceptually these can be sep�
arated into two independent streams� whether or not the information actually arrives on a
di�erent set of wires
� Flynn�s taxonomy classi�es machines according to whether they have
one stream or more than one stream of each type �Figure ��
 The four combinations are
SISD �single instruction stream� single data stream�� SIMD �single instruction stream� mul�
tiple data streams��MISD �multiple instruction streams� single data stream�� and MIMD

�multiple instruction streams� multiple data streams�


����� SISD Computers

Conventional single processor computers are classi�ed as SISD systems
 Each arithmetic
instruction initiates an operation on a data item taken from a single stream of data elements

Historical supercomputers such as the Control Data Corporation ���� and ���� �t this
category as do most contemporary microprocessors

Vector processors such as the Cray�� and its descendants are often classi�ed as SIMD

machines� although they are more properly regarded as SISD machines
 Vector processors
achieve their high performance by passing successive elements of vectors through separate
pieces of hardware dedicated to independent phases of a complex operation
 For example�
in order to add two numbers such as ��� � �� and ��� � ��� the numbers must have the
same exponent
 The processor must shift the mantissa �and decrement the exponent� of
one number until its exponent matches the exponent of the other number
 In this example

�A processor is said to have a �Harvard architecture� if it has two separate memory channels� one for

instructions and one for data�

��

��� � �� is adjusted to ��� � �� so it can be added to ��� � ��� and the sum is ��� � ��
 A
vector processor is specially constructed to feed a data stream into the processor at a high
rate� so that as one part of the processor is adding the mantissas in the pair �ai� bi� another
part of the processor is adjusting the exponents in �ai��� bi���


The ambiguity over the classi�cation of vector machines depends on how one views the
�ow of data
 A static 
snapshot� of the processor during the processing of a vector would
show several pieces of data being operated on at one time� and under this view one could
say one instruction �a vector add� initiates several data operations �adjust exponents� add
mantissas� etc
� and the machine might be classi�ed SIMD
 A more dynamic view shows
that there is just one stream of data� and elements of this stream are passed sequentially
through a single pipeline �which implements addition in this example�
 Another argument
for not including vector machines in the SIMD category will be presented when we see how
SIMD machines implement vector addition


����� SIMD Computers

SIMD machines have one instruction processing unit� sometimes called a controller and
indicated by a K in the PMS notation� and several data processing units� generally called
D�units or processing elements �PEs�
 The �rst operational machine of this class was the
ILLIAC�IV� a joint project by DARPA� Burroughs Corporation� and the University of Illinois
Institute for Advanced Computation �	�
 Later machines included the Distributed Array
Processor �DAP� from the British corporation ICL� and the Goodyear MPP
 Two recent
machines� the Thinking Machines CM�� and the MasPar MP��� are discussed in detail in
Section �
�
�

The control unit is responsible for fetching and interpreting instructions
 When it en�
counters an arithmetic or other data processing instruction� it broadcasts the instruction to
all PEs� which then all perform the same operation
 For example� the instruction might be 

add R�
R��� Each PE would add the contents of its own internal register R� to its own R�

To allow for needed �exibility in implementing algorithms� a PE can be deactivated
 Thus
on each instruction� a PE is either idle� in which case it does nothing� or it is active� in which
case it performs the same operation as all other active PEs
 Each PE has its own memory
for storing data
 A memory reference instruction� for example 
load R�
���� directs each
PE to load its internal register with the contents of memory location ���� meaning the ���th
cell in its own local memory


One of the advantages of this style of parallel machine organization is a savings in the
amount of logic
 Anywhere from ��� to 	�� of the logic on a typical processor chip is
devoted to control� namely to fetching� decoding� and scheduling instructions
 The remainder
is used for on�chip storage �registers and cache� and the logic required to implement the data
processing �adders� multipliers� etc
�
 In an SIMD machine� only one control unit fetches and
processes instructions� so more logic can be dedicated to arithmetic circuits and registers

For example� �� PEs �t on one chip in the MasPar MP��� and a ����� processor system is
built from �� chips� all of which �t on a single board �the control unit occupies a separate
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Vector processing is performed on an SIMD machine by distributing elements of vectors
across all data memories
 For example� suppose we have two vectors� a and b� and a machine
with ���� PEs
 We would store ai in location � of memory i and bi in location � of memory
i
 To add a and b� the machine would tell each PE to load the contents of location � into
one register� the contents of location � into another register� add the two registers� and write
the result
 As long as the number of PEs is greater than the length of the vectors� vector
processing on an SIMD machine is done in constant time� i
e
 it does not depend on the
length of the vectors
 Vector operations on a pipelined SISD vector processor� however� take
time that is a linear function of the length of the vectors


����� MISD Computers

There are few machines in this category� none that have been commercially successful or
had any impact on computational science
 One type of system that �ts the description
of an MISD computer is a systolic array� which is a network of small computing elements
connected in a regular grid
 All the elements are controlled by a global clock
 On each cycle�
an element will read a piece of data from one of its neighbors� perform a simple operation
�e
g
 add the incoming element to a stored value�� and prepare a value to be written to a
neighbor on the next step


One could make a case for pipelined vector processors �tting in this category� as well�
since each step of the pipeline corresponds to a di�erent operation being performed to the
data as it �ows past that stage in the pipe
 There have been pipelined processors with
programmable stages� i
e
 the function that is applied at each location in the pipeline could
vary� although the pipeline stage did not fetch its operation from a local control memory so
it would be di�cult to classify it as a 
processor
�

����� MIMD Computers

The category of MIMD machines is the most diverse of the four classi�cations in Flynn�s
taxonomy
 It includes machines with processors and memory units speci�cally designed to
be components of a parallel architecture� large scale parallel machines built from 
o� the
shelf� microprocessors� small scale multiprocessors made by connecting four vector processors
together� and a wide variety of other designs
 With the continued improvement in network
communication and the development of software packages that allow programs running on
one machine to communicate with programs on other machines� users are even starting to
use local networks of workstations as MIMD systems


Computer systems with two or more independent processors have been available commer�
cially for a long time
 For example� the Burroughs Corporation sold dual processor versions
of its B���� systems in the ����s
 These were rarely� if ever� used to work on the same job�
however
 Multiprocessors of this era were intended to be used for job level parallelism� i
e

each would run a separate program
 Parallel processing� in the sense of using more than one
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processor in the execution of a single program� has been an active area in corporate and aca�
demic research labs since the early ����s
 The c
mmp and cm� projects at Carnegie Mellon
University used DEC PDP��� microcomputers as processing elements and pioneered several
important developments in parallel hardware and software
 Commercial parallel processors
started to become widely used in the mid ����s
 By the early ����s these systems began
to approach top of the line vector processors in computing power� and the trend for future
high performance computing is clearly with parallel processing


����� Other Taxonomies

In addition to the vacuous MISD category and the di�culty in classifying vector processors�
there are other weaknesses of the Flynn taxonomy
 In the MIMD category� all arrays of
processors are lumped together regardless of how they are connected and how they view
memory
 Since these characteristics can have a dramatic e�ect on performance� it would
be desirable if the taxonomy re�ected those di�erences
 Shore � Shore� o�ered a very
similar taxonomy� but expanded the SIMD category to four subcategories
 He still did not
distinguish the pipelined vector computer and he also did not provide for the completely
independent array in the MIMD category
 There have been other attempts to modify the
Flynn taxonomy
 For example in Hwang ���� the MIMD category is subdivided into shared
memory systems� distributed memory systems and recon�gurable systems
 Unfortunately�
this mixes memory organization with communication organization� and although it is a
useful distinction it is not very satisfactory as a basis for a taxonomy
 Bell ��� divided
the MIMD category into systems with shared memory and those without shared memory

One addition to the Flynn taxonomy that has become very popular is SPMD� which stands
for Single Program � Multiple Data stream �see for example Karp �����
 In some sense it
represents a style of computing rather than an architecture
 Physically the system is an
MIMD multiprocessor because there are several independent processors� each with its own
data set and program memory
 However� the same program is executed by each processor�
and the processors are synchronized periodically
 This is a much simpler way to approach an
MIMD system than to have to manage many individual instruction streams
 It also provides
more �exibility than the SIMD system because di�erent processors may be at di�erent parts
of the program at any time
 By far the most ambitious attempt at a taxonomy is given by
Hockney and Jesshope ���� where the motivation was to treat pipelined vector processors as
a distinct architecture and to di�erentiate among the many multiprocessor possibilities
 The
notation resembles chemical notation for organic compounds and its complexity is beyond the
scope of this discussion� but it does lead to a classi�cation that provides a unique identi�er for
all of the systems that have been proposed or manufactured
 However� that same complexity
is the probable explanation for the lack of acceptance of the taxonomy


��� Pipelines

A common analogy for a pipeline is the assembly line used in manufacturing
 The end goal
is to increase productivity ! the number of instructions executed per second or the number

��

of cars built per day ! by dividing a complex operation into pieces that can be performed in
parallel
 Separate 
workers� implement successive steps along the assembly line� and when
an item �nishes one step it is passed down the line to next step

Pipelines are used in two major areas in computer design� instruction processing and

arithmetic operations
 The following requirements must be satis�ed in a pipelined system�

� A system is a candidate for pipelined implementation if it repeatedly executes a basic
function


� A basic function must be divisible into independent stages that have minimal overlap


� The complexity of the stages should be roughly similar


The number of stages is referred to as the depth of the pipeline
 As an example of a pipeline�
consider the �oating point addition of two numbers of the form m � �e
 One possible
breakdown of this function into stages is as follows �����

�
 If e� � e� swap the operands
 Find the di�erence in exponents ed � e� � e�


�
 Shift m� to the right by ed bits


�
 Compute the mantissa of the sum by adding m� and m�
 The exponent of the sum is
e�


�
 Normalize the sum


The extra complexity of a pipelined adder pays o� when adding long sequences of numbers

Operations at each stage can be done on di�erent pairs of inputs� e
g
 one stage can be
comparing the exponents in one pair of operands at the same time another stage is adding
the mantissas of a di�erent pair of operands

A very important requirement for overlapping operations this way is that there be no

resource con�icts� i
e
 the operands must be independent
 For example� suppose a program
contains the two instructions

R� 	 R� � R�

R� 	 R� � R�

Note that both instructions identify R� as one of their inputs
 There is a potential con�ict in
stages two and three of the adder pipeline because stage two might need to shift the mantissa
of R� at the same time stage three needs to add the mantissa of R� to the mantissa of R�

The solution is to make copies of the operands� and pass the copies through the pipeline

Thus the CPU gives the adder copies of R� and R� when it starts the pipeline for the �rst
pair� and the second stage gets these copies from the �rst stage along with a value of ed

There is another potential problem illustrated by this example
 Suppose the second

instruction is changed so one of its operands is R�� so the pair of instructions is�
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R� 	 R� � R�

R� 	 R� � R�

Now the second instruction depends on the result of the �rst instruction
 The CPU
cannot send the second pair of operands to the pipelined adder until the result of the �rst
addition exits the last stage of the pipeline
 Interactions such as these lead to periods when
pipeline stages are empty
 These empty time slots are often called bubbles

Figure 	 shows a type of diagram� known as a Gantt chart� that is commonly used to

illustrate the operation of a pipeline
 The horizontal axis represents time
 There is one row
for each stage of the pipeline
 A line segment during cycle ti means a stage is active in
that cycle� a blank means the stage is inactive
 The �gure illustrates the pipelined �oating
point adder of the previous example in the case when two successive instructions can be
overlapped and in the case where the second instruction must wait for the �rst to complete

In the case of overlapped instructions� note that in cycle t� the �rst stage is busy with the
second instruction while the second stage is busy with the �rst instruction
 In each successive
cycle the two instructions are passed down the 
assembly line� to the next stage
 In the �rst
case� the second sum is done after � cycles� but in the second case it is not �nished until
after the ��th cycle
 The 
bubble� in the pipeline is the ��cycle dead period in each stage
caused by delaying the second instruction

It should be apparent that in the general case a pipeline of depth d can process n items

in n� d steps when there are no bubbles
 Without a pipeline� each application of the basic
function would require d cycles� and they would have to be executed sequentially� for a total
time of n � d cycles
 The speedup obtained by a full pipeline is thus

n � d

n� d

When n � d we can safely ignore the d in the denominator� so the asymptotic speedup�
observed for large n� is a factor of d
 For example� suppose we want to add ���� pairs of
numbers� e
g
 when adding two �����element vectors
 If it takes 	 cycles for each addition�
a machine without a pipelined adder would require 	��� cycles
 With our 	�stage pipelined
adder� the last sum will appear after ���� � � cycles� so the pipeline is 	�������	 � ����
times faster
 Providing a steady stream of independent operands that will keep a pipeline
full is the distinguishing feature of a vector processor� which can initiate such a series of
operations with a single instruction

There are many possible sources of bubbles in pipelines
 Dependencies between instruc�

tions are the main cause
 For arithmetic pipelines� data dependencies arise when pairs of
operations share inputs and outputs
 Consider the following two add instructions�

z� 	 x� � y�

���

z� 	 x� � y�

The dependence illustrated previously is x� 	 z�� e
g
 both operands are the register R�

Other dependencies are z� 	 z� �both instructions write to the same register� and x� 	 z�

��

Stage
(1)
(2)
(3)
(4)
(5)

Cycle t0 t1 t2 t3 t4 t5

Stage
(1)
(2)
(3)
(4)

(5)

Cycle t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

• Case 1: two independent instructions,
fully overlapped. The second sum is
computed at the end of the 6th cycle.

• Case 2: the second
instruction must wait until
the first is done, introduc-
ing a 4-cycle bubble.

Figure 	� Gantt Charts for Pipelined Floating Point Adder
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�the output from the second instruction may overwrite the register before the �rst has had
a chance to read the old value� an unlikely occurrence in a vector machine� but a situation
that must be taken into account�
 Note that the instructions do not have to be consecutive�
i
e
 there could be intervening instructions
 A compiler that checks for dependencies and
possibly reorders instructions has to 
look ahead� in the code by an amount equal to the
depth of the pipeline used in the �rst instruction


Instruction pipelines� used to speed up the fetch�decode�execute cycle� are also susceptible
to bubbles
 The most common case here is caused by branch or loop instructions� which are
control dependencies
 If the pipeline is 
looking ahead� and fetching instructions it thinks
the machine will want to execute� but in fact the machine branches to another location� a
bubble is introduced while the fetch stage goes to get the instructions at the new location


Pipelines have been widely used in high performance machines for many years
 The
CDC ���� is a classic example of a complex instruction pipeline� using a circuit known
as a 
scoreboard� to detect data dependencies between instructions and instruction bu�ers
to implement pipelining in the fetch�decode logic
 The Cray�� was a very successful early
supercomputer in which every data processing unit was pipelined
 Until the late ����s
pipelining was one of the attributes that separated 
mainframes� and supercomputers from
microprocessors� but with the advance of VLSI technology microprocessors now have room
on chip for complex control circuitry
 Most now have pipelined data processing units and
complex instruction scheduling logic that rivals that of the CDC ����� an early pipelined
processor known for its innovative instruction processing


��� Memory Organizations

So far the discussion of high performance computing has concentrated on increasing the
amount of processing power in a system� either through parallelism� which seeks to increase
the number of instructions that can be executed in a time period� or through pipelining�
which improves the instruction throughput
 Another� equally important� aspect of high
performance computing is the organization of the memory system
 No matter how fast
one makes the processing unit� if the memory cannot keep up and provide instructions and
data at a su�cient rate there will be no improvement in performance
 The main problem
that needs to be overcome in matching memory response to processor speed is the memory
cycle time� de�ned in section �
� to be the time between two successive memory operations

Processor cycle times are typically much shorter than memory cycle times
 When a processor
initiates a memory transfer at time t�� the memory will be 
busy� until t�� tc� where is the
memory cycle time
 During this period no other device ! I�O controller� other processors�
or even the processor that makes the request ! can use the memory since it will be busy
responding to the request


Solutions to the memory access problem have led to a dichotomy in parallel systems
 In
one type of system� known as a shared memory system� there is one large virtual memory�
and all processors have equal access to data and instructions in this memory
 The other type
of system is a distributed memory� in which each processor has a local memory that is not

��

accessible from any other processor


The di�erence between shared or distributed memory is a di�erence in the structure of
virtual memory� i
e
 the memory as seen from the perspective of a processor
 Physically�
almost every memory system is partitioned into separate components that can be accessed
independently
 What distinguishes a shared memory from a distributed memory is how the
memory subsystem interprets an address generated by a processor
 As an example� suppose
a processor executes the instruction load R�
i� which means 
load register R� with the
contents of memory location i� �denoted Mem�i��
 The question is� what does i mean" In
a shared memory system� i is a global address� and Mem�i� to one processor is the same
memory cell as Mem�i� to another processor
 If both processors execute this instruction
at the same time they will both load the same information into their R� registers
 In a
distributed memory system� i is a local address
 If two processors both execute load R�
i

they may end up with di�erent values in their R� registers since Mem�i� designates two
di�erent memory cells� one in the local memory of each processor


The distinction between shared memory and distributed memory is an important one for
programmers because it determines how di�erent parts of a parallel program will communi�
cate
 In a shared memory system it is only necessary to build a data structure in memory
and pass references to the data structure to parallel subroutines
 For example� a matrix
multiplication routine that breaks matrices into quadrants only needs to pass the indices of
each quadrant to the parallel subroutines
 A distributed memorymachine on the other hand
must create copies of shared data in each local memory
 These copies are created by sending
a message containing the data to another processor
 In the matrix multiplication example�
the controlling process would have to send messages to three other processors
 Each message
would contain the submatrices required to compute one quadrant of the result
 A drawback
to this memory organization is that these messages might have to be quite large� in this
example� half of each input matrix needs to be sent to each parallel subroutine


In this section we will explore the range of techniques used to connect processors to
memories in high performance computers and how these techniques a�ect programmers

The �rst section is on interleaved memory� a method long used in vector processors to
provide successive vector elements at a rate that matches the cycle time in the pipelined
data processing units
 The next two sections deal with shared memory and distributed
memory organizations for parallel systems


����� Interleaved Memory

In an interleaved memory� the memory is divided into a set of banks
 An interleaved memory
with n banks is said to be n�way interleaved
 One way of allocating virtual addresses to
memory modules is to divide the memory space �the set of all possible addresses a processor
can generate� into contiguous blocks
 If there are n banks� memory location i would reside
in bank number i�n �ignoring remainders�
 In an interleaved memory� however� consecutive
addresses reside in di�erent banks� memory location i is in bank number i mod n
 For
example� suppose there are � banks� each containing �	� bytes
 The block�oriented scheme
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would assign virtual addresses � � � � �		 to the �rst bank� �	� � � � 	�� to the second bank� and
so on
 The interleaved scheme would assign addresses �� �� �� � � � to the �rst bank� �� 	� ��
� � � to the second bank� etc
 �Figure ��

However the memory space is split up among the banks� as long as requests are sent to

two di�erent banks they can be handled simultaneously
 The processor can request a transfer
from location i on one cycle� and on the next cycle request information from location j
 If i
and j are in di�erent banks� the information will be returned on successive cycles
 Note that
the latency of the request� i
e
 the number of cycles a processor has to wait before receiving
the contents of location i� is not a�ected
 However the bandwidth is improved� if there are
enough banks the memory system can potentially send information at a rate of one word
per processor cycle� regardless of what the memory cycle time is

The decision to allocate addresses as contiguous blocks or in interleaved fashion depends

on how one expects information to be accessed
 Programs are compiled so instructions
reside in successive addresses� so there is a high probability that after a processor executes
the instruction at location i it will execute the instruction at i� ��Section �
��
 Compilers
can also allocate vector elements to successive addresses� so operations on entire vectors can
take advantage of interleaving
 For these reasons� vector processors universally have some
form of interleavedmemory
 However� shared memorymultiprocessors use the block�oriented
scheme since memory referencing patterns in an MIMD system are quite di�erent
 There the
goal is to connect a processor to a single memory and use as much information as possible
from that memory before switching to another memory

Systems often provide some �exibility in fetching vector elements
 In some systems it is

possible to load every nth element� for example when fetching elements of a vector v that is

��

stored in consecutive memory cells with n � �the memory would return v��v� �v� The interval
between elements is known as the stride
 One interesting use of this feature is in accessing
matrices
 If the stride is set to one more than the number of rows� a single memory request
will return the diagonal elements �assuming column major layout and the columns are stored
contiguously�
 Using a stride may cancel any bene�ts of interleaving if programmers are not
careful
 In an extreme case� setting the stride to the degree of interleaving means every item
is fetched from the same bank and the time between successive elements will be the memory
cycle time


����� Shared Memory

A straightforward way to connect several processors together to build a multiprocessor is
shown in Figure �
 The physical connections are quite simple
 Most bus structures allow an
arbitrary �but not too large� number of devices to communicate over the bus
 Bus protocols
were initially designed to allow a single processor and one or more disk or tape controllers
to communicate with memory
 If the I�O controllers are replaced by processors� one has a
small single�bus multiprocessor


The problem with this design is that processors must contend for access to the bus
 If a
processor Pj is fetching an instruction� all other processors Pjj 	� i must wait until the bus is
free
 If there are only two processors they can perform close to their maximum rate since the
bus can alternate between them� as one processor is decoding and executing an instruction�
the other can be using the bus to fetch its next instruction
 However� when a third processor
is added performance begins to degrade
 Usually by the time �� processors are connected
to the bus the performance curve has �attened out so that adding an ��th processor will
not increase performance at all
 The bottom line is the fact that the memory and bus have
a �xed bandwidth� determined by a combination of the cycle time of the memory and the
bus protocol� and in a single�bus multiprocessor this bandwidth is divided among several
processors
 If the processor cycle time is very slow compared to the memory cycle� a fairly
large number of processors can be accommodated by this plan� but in fact processor cycles
are usually much faster than memory cycles so this scheme is not widely used


A slight modi�cation to this design will improve performance� but it cannot inde�nitely
postpone the �attening of the performance curve
 If each processor has its own local cache�
there is a high probability �p 	 ���� that the instruction or data it wants is in the local cache

A reasonable cache hit rate will greatly reduce the number of accesses a processor makes
and thus improve overall e�ciency
 The 
knee� of the performance curve� which identi�es a
point where it is still cost�e�ective to add processors� can now be around �� processors� and
the curve will not �atten out until around �� processors


Giving each processor its own cache introduces a di�culty known as the cache coherency
problem
 In its simplest form� the problem may be exempli�ed by the following scenario

Suppose two processors use data item A� so A ends up in the cache of both processors
 Next
suppose processor � performs a calculation that changes A
 When it is done� the new value
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Figure �� Shared Memory Multiprocessor with Discrete Memory Modules

of A is written out to main memory
� Processor � at a later time needs to fetch A
 However�
since A was already in its cache� it will use the cached value and not the newly updated value
calculated by processor �
 Maintaining a consistent version of shared data requires providing
new versions of the cached data to each processor whenever one of the processors updates
its copy

The multiprocessors produced by Sequent� Inc
 are classic examples of machines of this

type
 Their �rst machine� the Balance ����� was intended to compete with the DEC VAX
���� a popular minicomputer at that time
 A ��processor con�guration gave slightly less
performance than the VAX� but the next larger con�guration� with four processors� was
faster
 The operating system was a modi�ed version of Unix
 There was a single global task
queue� and each processor could fetch a task from the queue� execute it until it blocks or times
out� and return it to the queue
 Thus the system implemented a form of job level parallelism

Sequent also provided a library of procedures that allowed users to write parallel programs�
and the machine became a popular testbed for parallel languages and algorithms
 The
current machines� in the Symmetry series� are widely used for on�line transaction processing

Programming a shared memory machine is fairly straightforward
 Programming con�

structs such as semaphores� fork�join� and monitors� which were developed for communi�
cation and synchronization of parallel processes in operating systems and other concurrent
programming applications� have been adapted for parallel processing
 The implementation
of the basic synchronization primitives from which these constructs are built is more complex
in a parallel system� but this complexity is hidden from users
 For example� the bus in the
Sequent Symmetry has provisions for implementing a pool of semaphores so that processes
are guaranteed to gain exclusive access to shared structures

Another way of building a shared memory multiprocessor is shown in Figure �
 In these

�Most single�bus microprocessors use a design known as write�through cache in which values written to

memory are sent simultaneously to the cache and to the main memory�
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designs� the bus has been replaced by a switch that routes requests from a processor to one
of several di�erent memorymodules
 Even though there are several physical memories� there
is one large virtual address space
 The advantage of this organization is based on the fact
the switch can handle multiple requests in parallel
 Each processor can be paired up with
a memory� and each can then run at full speed as it accesses the memory it is currently
connected to
 Contention still occurs� though
 If two processors make requests of the same
memorymodule only one will be given access and the other will be blocked
 Several machines
with this design will be discussed in the survey of MIMD machines following the section on
interconnection topology� which introduces concepts that will explain various switch designs


����� Distributed Memory

In a distributed memory system the memory is associated with individual processors and a
processor is only able to address its own memory
 Some authors refer to this type of system
as a multicomputer� re�ecting the fact that the building blocks in the system are themselves
small computer systems complete with processor and memory


There are several bene�ts of this organization
 First� there is no bus or switch contention

Each processor can utilize the full bandwidth to its own local memory without interference
from other processors
 Second� the lack of a common bus means there is no inherent limit to
the number of processors� the size of the system is now constrained only by the network used
to connect processors to each other
 Third� there are no cache coherency problems
 Each
processor is in charge of its own data� and it does not have to worry about putting copies of
it in its own local cache and having another processor reference the original


The major drawback in the distributed memory design is that interprocessor communi�
cation is more di�cult
 If a processor requires data from another processor�s memory� it
must exchange messages with the other processor
 This introduces two sources of overhead�
it takes time to construct and send a message from one processor to another� and a receiving
processor must be interrupted in order to deal with messages from other processors


Programming on a distributed memory machine is a matter of organizing a program
as a set of independent tasks that communicate with each other via messages
 In addition�
programmers must be aware of where data is stored� which introduces the concept of locality
in parallel algorithm design
 An algorithm that allows data to be partitioned into discrete
units and then runs with minimal communication between units will be more e�cient than
an algorithm that requires random access to global structures


Semaphores� monitors� and other concurrent programming techniques are not directly
applicable on distributed memory machines� but they can be implemented by a layered soft�
ware approach
 User code can invoke a semaphore� for example� which is itself implemented
by passing a message to the node that 
owns� the semaphore
 This approach is not very
e�cient� however� and it has the drawback of nonuniform memory access� i
e
 the latency
of a memory request� in this case reading the value of a semaphore� is proportional to the
distance between the processor making the request and the memorywhere the value is stored


Which programming style is easier ! shared memory with semaphores� etc
 or dis�
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Figure �� Distributed Memory Parallel Processor

tributed memory with message passing ! is often a matter of personal preference
 The
message passing style �ts very well with the object oriented programming methodology� and
if a program is already organized in terms of objects it may be quite easy to adapt it for a
distributed memory system
 When faced with a decision of whether to implement a program
in shared memory or distributed memory the outcome is usually based on the amount of
information that must be shared by parallel tasks
 Whatever information is shared among
tasks must be copied from one node to another via messages in a distributed memory sys�
tem� and this overhead may reduce e�ciency to the point where a shared memory system is
preferred


A PMS diagram of a simple distributed memory parallel processor is shown in Figure
�
 On the left is the diagram of a single node� often called a processing element� or PE

The organization of a PE explains how messages are passed from one PE to another
 As far
as any one processor is concerned� the other processors are simply I�O devices
 To send a
message to another PE� a processor copies information into a data block in its local memory
and then tells its local controller to transfer the information to an external device� much the
same way a disk controller in a microcomputer would write a block on a disk drive
 In this
case� however� the block of data is transferred over the interconnection network to an I�O
controller in the receiving node
 That controller �nds room for the incoming message in its
local memory and then noti�es the processor that a message has arrived


��� Topology

A major consideration in the design of parallel systems is the set of pathways over which
the processors� memories� and switches communicate with each other
 These connections
de�ne the interconnection network� or topology� of the machine
 Attributes of the topology
determine how processors will share data and at what cost


The following discussion of the properties of interconnection networks is based on a
collection of nodes that communicate via links
 In an actual system the nodes can be either
processors� memories� or switches
 Unless otherwise noted the links will always be point�to�
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Figure ��� Ring vs
 Fully Connected Network

point data paths� i
e
 not buses that are shared by several nodes
 The properties discussed
here apply equally to MIMD and SIMD machines� or to shared memory or distributed
memory architectures
 Examples of most of the topologies will be given in the survey of
high performance systems �Section �
	�


Two nodes are neighbors if there is a link connecting them
 The degree of a node is
de�ned to be the number of its neighbors
 Figure �� shows two common topologies� a ring
and a fully connected network� each with eight nodes
 Each node in the ring is connected
to only two other nodes� while each node in the fully connected network is linked to every
other node
 In practice the degree of a topology has an e�ect on cost� since the more links
a node has the more logic it takes to implement the connections


When a node is not connected to every other node� messages may have to go through
intervening nodes to reach their �nal destination
 The diameter of a network is the longest
path between any two nodes
 Again the ring and fully connected network show two extremes

A ring of n nodes has diameter n��� but a fully connected network has a �xed diameter ���
no matter how many nodes there are


The diameter of a ring grows as more nodes are added� but the diameter of a fully con�
nected network remains the same
 On the other hand� a ring can expand inde�nitely without
changing the degree� but each time a new node is added to a fully connected network a link
has to be added to each existing node
 Scalability refers to the increase in the complexity of
communication as more nodes are added
 In a highly scalable topology more nodes can be
added without severely increasing the amount of logic required to implement the topology
and without increasing the diameter


A scalable topology that has been used in several parallel processors is the hypercube�
shown in Figure ��
 A line connecting two nodes de�nes a ��dimensional 
cube
� A square
with four nodes is a ��dimensional cube� and a �D cube has eight nodes
 This pattern reveals
a rule for constructing an n�dimensional cube� begin with an �n����dimensional cube� make
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Figure ��� Hypercubes

an identical copy� and add links from each node in the original to the corresponding node
in the copy
 Doubling the number of nodes in a hypercube increases the degree by only �
link per node� and likewise increases the diameter by only � path
 It is left as an exercise to
prove that an n�dimensional hypercube has �n nodes� diameter n� and degree n


Communication in a hypercube is based on the binary representation of node IDs
 The
nodes are numbered so that two nodes are adjacent if and only if the binary representations
of their IDs di�er by one bit
 For example� nodes ���� and ���� are immediate neighbors
but ���� and ���� are not
 An easy way to label nodes is to assign node IDs as the cube
is constructed
 When you copy an �n � ���dimensional cube� make sure the corresponding
nodes in the two copies have the same IDs
 Then extend all the IDs by one bit
 Append a
� to the IDs of nodes in the original cube� and append a � to the IDs of nodes in the copy

As an example the nodes in the �D and �D cubes in Figure �� are labeled according to this
scheme� the labeling of the �D and �D cubes is left for an exercise


Node IDs are the basis for a simple algorithm for routing information in a hypercube

An n�dimensional cube will have n�bit node IDs
 Sending a message from node A to node
B can be done in n cycles� where on each cycle a node will either hold a message or forward
it along one of its links
 On cycle i the node that currently holds the message will compare
bit i of its own ID with bit i of the destination ID
 If the bits match� the node holds the
message
 If they don�t match� it forwards the message along dimension i� where dimension
i is the dimension that was added in the ith step of the construction of the cube �i
e
 it is
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the same 
direction� at all nodes�
 As an example� the path from node � to node � in a �D
cube is marked with a heavy gray line in Figure ��

Another desirable property of interconnection networks is node symmetry
 A node sym�

metric network has no distinguished node� that is� the 
view� of the rest of the network
is the same from any node
 Rings� fully connected networks� and hypercubes are all node
symmetric
 Trees and stars� shown in Figure ��� are not
 A tree has three di�erent types of
nodes� namely a root node� interior nodes� and leaf nodes� each with a di�erent degree
 A
star has a distinguished node in the center which is connected to every other node
 When a
topology is node asymmetric a distinguished node can become a communications bottleneck


A more formal de�nition of a communication bottleneck is based on a property known
as the bisection width� which is the minimum number of links that must be cut in order to
divide the topology into two independent networks of the same size �plus or minus one node�

The bisection width of a tree is �� since if either link connected to the root is removed the tree
is split into two subtrees
 The bisection bandwidth of a parallel system is the communication
bandwidth across the links that are cut in de�ning the bisection width
 This bandwidth is
useful in de�ning worst� case performance of algorithms on a particular network� since it is
related to the cost of moving data from one side of the system to the other


Another common topology is a planar ��D� mesh� shown in Figure ��
 This network is
basically a matrix of nodes� each with connections to its nearest neighbors
 Meshes usually
have 
wraparound� connections� e
g
 the node at the top of the grid has an 
up� link that
connects to the node at the bottom of the grid
 If you visualize only north�south links in
a rectangular mesh� you can see these links turn the �D mesh into a �D cylinder
 Now if
the east�west links are added� it connects the ends of the cylinder to form a toroidal solid

Thus a mesh topology with wraparound connections is often referred to as a torus
 In many

��
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Figure ��� Mesh Topologies

systems the wraparound connections are skewed by one or more rows �or columns� or both��
in this case the topology is known as a twisted torus
 Note that a path that starts in the
northwest corner of a twisted torus and heads continually east will visit every node exactly
once before returning to the northwest corner

The two �nal interconnection networks introduced in this section are examples of mul�

tistage networks
 Systems built with these topologies have processors on one edge of the
network� memories or processors on another edge� and a series of switching elements at the
interior nodes
 In order to send information from one edge to another� the interior switches
are con�gured to form a path that connects nodes on the edges
 The information then goes
from the sending node� through one or more switches� and out to the receiving node
 The
size and number of interior nodes contributes to the path length for each communication�
and there is often a 
setup time� involved when a message arrives at an interior node and
the switch decides how to con�gure itself in order to pass the message through

The �rst example of a multistage network is the crossbar switch Figure ��
 In a typical

application there will be a column of processors on the left edge and a row of memories on the
bottom edge
 The switch con�gures itself dynamically to connect a processor to a memory
module
 As long as each processor wants to communicate with a di�erent memory there
will be no contention
 If two or more processors need to access the same memory� however�
one will be blocked until the switch recon�gures itself
 A crossbar has a short diameter !
information needs to pass through only one switching element on a path from one edge to
another ! but poor scalability
 If there are n processors and a like number of memories
there are n� interior switches
 Adding another processor and memory means adding another
�n � � interior nodes

A banyan network is a multistage switching network that has the same number of inputs
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as outputs and interior nodes that are m �m switches
 Examples of banyan networks are
butter�y networks and omega networks� which are both built from � � � switches
 The
diameter of a butter�y is log� n� where n is the number of inputs and outputs� and there
are O�n � log� n� switches� so these networks scale more e�ciently than a crossbar �Figure
�	�
 The �� � switch in a butter�y can be con�gured in one of two states �Figure �	�
 One
con�guration connects input � to output � and input � to output �
 The other con�guration
�ips the outputs� so input � connects to output � and input � connects to output �
 The
switching network uses the binary representation of the destination address in order to
construct a path from input to output
 The switch at stage i in the network uses bit i to
determine how to con�gure itself� if the bit is �� the request should go through the top output�
and if it is � it should go through the bottom output
 For example� suppose a processor
needs to fetch information from memoryM�
 The binary representation of 	 is ���
 The �rst
switch will pass the request out its bottom output� the second switch will pass the request
out its top output� and the last switch will pass the request out its bottom output
 Note that
this pattern of connections �top�bottom�top� works no matter which processor generates the
request
 Whether a switch con�gures itself in the straight�through or �ipped con�guration
depends on which input the request comes from
 For example� if the request comes from
the top input and should be routed out the top output� then the switch will go into the
straight�through con�guration� but if the request comes from the top input and should go
out the bottom the switch will use the �ipped con�guration


As is the case with the crossbar switch� there are con�gurations of the butter�y that
will allow each processor to connect to a di�erent memory so all processors can be active
and no requests are blocked
 However� the butter�y is not as �exible as the crossbar� since
combinations of requests that are nonblocking in the crossbar are blocking in the butter�y
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Figure �	� Butter�y Network

For example� if the �rst switch in the �rst column is in the straight�through con�guration
because processor P� is making a request to memory M�� processor P� is constrained to
communicate with memories � through � ����� through �����
 With a crossbar P� would be
allowed to connect to M�� M�� or M� without blocking


Crossbar and butter�y switches have both been used to implement shared memory mul�
tiprocessors
 Even though there are independent memory modules� there is a single memory
space� i
e
 an address i generated by one processor refers to the same cell as an address i
generated by any other processor
 Addresses are not interleaved� though
 Instead the mem�
ory space is divided into contiguous blocks of equal size
 For example� suppose there are �
memory units and the address space has ��� � ���� words
 M� would hold addresses � to
�		� M� would have �	� to 	��� and so on


Three important attributes of an interconnection network are the timing strategy� control
strategy� and switching strategy ���
 The two alternatives for control are a single central
controller or a distributed control system in which routing strategies are implemented in
each node
 Message routing based on node IDs in hypercubes and butter�y switches are
examples of distributed control� since each node decides for itself how to reroute incoming
messages
 A centralized strategy would work well in a star network� messages from outer
nodes must pass through the center� which would then decide how to forward the message

Synchronous control techniques are characterized by a global clock that broadcasts clock
signals to all devices in a system so that the entire system operates in a lock�step fash�
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ion
 Asynchronous techniques do not utilize a single global clock� but rather distribute the
control function throughout the system� often utilizing many individual clocks for timing

Control and coordination of the various parts of the system are accomplished via some form
of communication or 
hand shaking
� Thus the interconnection network can operate syn�
chronously o� of a global clock or it may have distributed control down to the level of the
individual switches
 The advantage of a single global clock for control is simplicity in both
the hardware and the software� the advantage of distributed control is expandability and
�exibility
 Synchronous and asynchronous timing strategies are a fundamental characteristic
of computing systems in general
 The SIMD systems discussed previously normally operate
synchronously with a global clock while the MIMD systems function asynchronously with a
clock in each PE

Switching strategy is the other important characteristic of interconnection networks
 The

two most popular techniques are packet switching and circuit switching
 In packet switching�
a message is broken into small packets which are transmitted through the network in a 
store
and forward� mode
 A packet traverses one link� where the receiving node will examine it
and decide what to do
 It may have to store the packet for a while before forwarding it
toward its �nal destination� e
g
 there may be other packets waiting to go out on that link

It is also possible that packets will traverse di�erent sets of links on their route from source
to destination
 Packets may experience delays at each switching point depending on the
tra�c in the network
 The circuit switching technique establishes a complete path between
the source and the destination and then starts transferring information along the path
 The
circuit is kept open until the entire message has been transmitted
 We will see examples of
both strategies in the section on MIMD systems
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����� Vector Processors

A vector processor is a processor that can operate on entire vectors with one instruction�
i
e
 the operands of some instructions specify complete vectors
 For example� consider the
following add instruction�

C 	 A � B

In both scalar and vector machines this means 
add the contents of A to the contents of
B and put the sum in C
� In a scalar machine the operands are numbers� but in vector
processors the operands are vectors and the instruction directs the machine to compute the
pairwise sum of each pair of vector elements
 A processor register� usually called the vector
length register� tells the processor how many individual additions to perform when it adds
the vectors

A vectorizing compiler is a compiler that will try to recognize when loops can be trans�

formed into single vector instructions
 For example� the following loop can be executed by
a single instruction on a vector processor�

	�

DO �� I	�
N

A�I
 	 B�I
 � C�I


�� CONTINUE

This code would be translated into an instruction that would set the vector length to N

followed by a vector add instruction

The use of vector instructions pays o� in two di�erent ways
 First� the machine has

to fetch and decode far fewer instructions� so the control unit overhead is greatly reduced
and the memory bandwidth necessary to perform this sequence of operations is reduced a
corresponding amount
 The second payo�� equally important� is that the instruction provides
the processor with a regular source of data
 When the vector instruction is initiated� the
machine knows it will have to fetch n pairs of operands which are arranged in a regular
pattern in memory
 Thus the processor can tell the memory system to start sending those
pairs
 With an interleaved memory� the pairs will arrive at a rate of one per cycle� at
which point they can be routed directly to a pipelined data unit for processing
 Without an
interleaved memory or some other way of providing operands at a high rate the advantages
of processing an entire vector with a single instruction would be greatly reduced

A key division of vector processors arises from the way the instructions access their

operands
 In the memory to memory organization the operands are fetched from memory
and routed directly to the functional unit
 Results are streamed back out to memory as
the operation proceeds
 In the register to register organization operands are �rst loaded
into a set of vector registers� each of which can hold a segment of a register� for example
�� elements
 The vector operation then proceeds by fetching the operands from the vector
registers and returning the results to a vector register

The advantage of memory to memorymachines is the ability to process very long vectors�

whereas register to register machines must break long vectors into �xed length segments

Unfortunately� this �exibility is o�set by a relatively large overhead known as the startup
time� which is the time between the initialization of the instruction and the time the �rst
result emerges from the pipeline
 The long startup time on a memory to memory machine
is a function of memory latency� which is longer than the time it takes to access a value in
an internal register
 Once the pipeline is full� however� a result is produced every cycle or
perhaps every other cycle
 Thus a performance model for a vector processor is of the form

T � s� aN

where s is the startup time� N is the length of the vector and a is an instruction dependent
constant� usually ���� � or �

Examples of this type of architecture include the Texas Instruments Inc
 Advanced

Scienti�c Computer and a family of machines built by Control Data Corp
 known �rst as
the Cyber ��� series and later the ETA��� when Control Data Corp
 founded a separate
company known as ETA Systems Inc
 These machines appeared in the mid ����s after a
long development cycle that left them with dated technology and disappeared in the mid
����s
 For a thorough discussion of their characteristics� see Hockney and Jesshope ����
 One
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of the major reasons for their demise was the large startup time� which was on the order
of ��� processor cycles
 This meant that short vector operations were very ine�cient� and
even for vectors of length ��� the machines were delivering only about half their maximum
performance
 In a later section we will see how this vector length that yields half of peak
performance is used to characterize vector computers

In the register to register machines the vectors have a relatively short length� �� in

the case of the Cray family� but the startup time is far less than on the memory to memory
machines
 Thus these machines are muchmore e�cient for operations involving short vectors�
but for long vector operations the vector registers must loaded with each segment before the
operation can continue
 Register to register machines now dominate the vector computer
market� with a number of o�erings from Cray Research Inc
� including the Y�MP and the C�
��
 The approach is also the basis for machines from Fujitsu� Hitachi and NEC
 Clock cycles
on modern vector processors range from �
	ns �NEC SX��� to �
�ns �Cray C���� and single
processor performance on LINPACK benchmarks is in the range of ���� to ���� MFLOPS
�� to � GFLOPS�

The basic processor architecture of the Cray supercomputers has changed little since the

Cray�� was introduced in ���� ����
 There are � vector registers� named V� through V��
which each hold �� ���bit words
 There are also � scalar registers� which hold single ���bit
words� and � address registers �for pointers� that have ���bit words
 Instead of a cache�
these machines have a set of backup registers for the scalar and address registers� transfer
to and from the backup registers is done under program control� rather than by lower level
hardware using dynamic memory referencing patterns

The original Cray�� had �� pipelined data processing units� newer Cray systems have ��


There are separate pipelines for addition� multiplication� computing reciprocals �to divide
X by Y � a Cray computes X � ���Y ��� and logical operations
 The cycle time of the data
processing pipelines is carefully matched to the memory cycle times
 The memory system
delivers one value per clock cycle through the use of ��way interleaved memory

An interesting feature introduced in the Cray computers is the notion of vector chaining


Consider the following two vector instructions�

V� 	 V� � V�

V� 	 V� � V�

The output of the �rst instruction is one of the operands of the second instruction
 Recall
that since these are vector instructions� the �rst instruction will route up to �� pairs of
numbers to a pipelined multiplier
 About midway through the execution of this instruction�
the machine will be in an interesting state� the �rst few elements of V� will contain recently
computed products� the products that will eventually go into the next elements of V� are
still in the multiplier pipeline� and the remainder of the operands are still in V� and V��
waiting to be fetched and routed to the pipeline
 This situation is shown in Figure ��� where
the operands from V� and V� that are currently in the multiplier pipeline are indicated by
gray cells
 At this point� the system is fetching V��k� and V��k� to route them to the �rst
stage of the pipeline and V��j� is just leaving the pipeline
 Vector chaining relies on the

	�

path marked with an asterisk
 While V��j� is being stored in the vector register� it is also
routed directly to the pipelined adder� where it is matched with V��j�
 As the �gure shows�
the second instruction can begin even before the �rst �nished� and while both are executing
the machine is producing two results per cycle �V��i� and V��j�� instead of just one


Without vector chaining� the peak performance of the Cray�� would have been �� MFLOPS
�one full pipeline producing a result every ��
	ns� or ���������� results per second�
 With
three pipelines chained together� there is a very short burst of time where all three are
producing results� for a theoretical peak performance of ��� MFLOPS
	 In principle vector
chaining could be implemented in a memory�to�memory vector processor� but it would re�
quire much higher memory bandwidth to do so
 Without chaining� three 
channels� must
be used to fetch two input operand streams and store one result stream� with chaining� �ve
channels would be needed for three inputs and two outputs
 Thus the ability to chain oper�
ations together to double performance gave register� to�register designs another competitive
edge over memory�to� memory designs


����� Superscalar Processors

The evolution of microprocessors has reached the point where architectural concepts pio�
neered in vector processors and mainframe computers of the ����s �most notably the CDC�
���� and Cray��� are starting to appear in RISC processors
 Early RISC machines were very
simple single�chip processors
 As VLSI technology improved more room became available on
the chip
 Rather than increase the complexity of the architecture� most designers decided
to use this room on techniques to improve the execution of their current architecture
 The
two principle techniques are on�chip caches and instruction pipelines


The latest step in this evolutionary process is the superscalar processor
 The name means
these processors are scalar processors that are capable of executing more than one instruction
in each cycle
 The keys to superscalar execution are an instruction fetching unit that can
fetch more than one instruction at a time from cache� instruction decoding logic that can
decide when instructions are independent and thus executed simultaneously� and su�cient
execution units to be able to process several instructions at one time
 Note that the execution
units may be pipelined� e
g
 they may be �oating point adders or multipliers� in which case
the cycle time for each stage matches the cycle times on the fetching and decoding logic

In many systems the high level architecture is unchanged from earlier scalar designs
 The
superscalar designs use instruction level parallelism for improved implementation of these
architectures


A good example of a superscalar processor is the IBM RS����� ����
 There are three
major subsystems in this processor� the instruction fetch unit� an integer processor� and a
�oating point processor
 The instruction fetch unit is a �� stage pipeline� during the �rst
stage a packet of four instructions is fetched from an instruction cache� and in the second

�In the Linpak benchmark tables the theoretical peak performance of the Cray�	S is listed as 	�


MFLOPS� probably because it was realistic to keep only two pipelines chained together for any reason�

able period of time
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stage instructions are routed to the integer processor and�or �oating point processor
 An
interesting feature of this instruction unit is that it executes branch instructions itself so
that in a tight loop there is e�ectively no overhead from branching since the instruction unit
executes branches while the data units are computing values
 The integer unit is a four�
stage pipeline
 In addition to executing data processing instructions this unit does some
preprocessing for the �oating point unit
 The �oating point unit itself is six stages deep

The following example from ���� shows the potential of this style of computing
 This

code from a computer graphics application rotates and displaces a set of �x� y� pairs by an
angle q and displacement �xd� yd��

x�i � xi cos #� yi sin# � xd
y�i � yi cos #� xi sin# � yd

A vector processor would load the �x� y� pairs into two vector registers and then use vector
instructions
 On the RS����� the operations are compiled into the following loop �constants
xd� sin#� etc
 are loaded into registers before the loop begins��

L� load R�
x�i�

fma R��
R�
cos
xd

load R�
y�i�

fma R��
R�
cos
yd

fma R��
R�
�sin
R��

store R��
x�i��

fma R��
R�
sin
R��

store R��
y�i��

branch L

The fma W
X
Y
Z instruction is 
�oating multiply and add�� i
e
 W 	 X�Y�Z 
 Note
that the compiler has carefully interleaved load and store instructions with data processing
instructions� and there are eight �oating point operations �two per fma instruction� in each
loop iteration and the loop itself has eight instructions� not counting the branch
 Over the
entire loop� then� the processor initiates one �oating point operation per instruction
 Since
the instruction fetch unit executes the branch there are no cycles when the �oating point
unit is not busy
 The machine will deliver one result per cycle for arbitrarily long vectors
as long as there are no cache misses
 See ���� for a detailed explanation of the timing of
this loop
 A ��
	 MHz RS����� system ran the LINPACK benchmark � Gaussian elimina�
tion� at a rate of ��� MFLOPS and has a theoretical peak performance of ��	 MFLOPS

The HP �������	 workstation has a �� MHz superscalar HP�PA processor
 This machine
executes the LINPACK benchmark at ��� MFLOPS� with a theoretical peak performance
of ��� MFLOPS
 By comparison� the Cray��S� with a clock cycle of ��MHz� performs at
��� MFLOPS and a theoretical peak of ��� MFLOPS
 The advantage of the superscalar
approach is that it does not rely on a vectorizing compiler to detect loops and turn them
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into vector instructions
 A superscalar machine still requires a very sophisticated compiler
to allocate resources and schedule operations in an order that will best take advantage of the
resources of the machine� but in the long run the superscalar approach may be more �exible
and applicable to a wider range of applications than vector processing


����� Shared Memory MIMD Multiprocessors

The history of shared memorymultiprocessors goes back to the early ����s� to two in�uential
research projects at Carnegie� Mellon University
 The �rst machine� named c
mmp �from
the PMS notation for 
computer with multiple mini�processors��� was organized around a
crossbar switch that connected �� PDP��� processors to �� memory banks
 The second�
cm�� also used PDP��� processors� but connected them via the tree�shaped network shown
in Figure �� on page ��
 The basic building block for this system was a processor cluster�
which consisted of four processors� each with their own local memories
 The global memory
space was evenly partitioned among the memories in the system
 When a processor generated
a request for address i� its bus logic would check to see if i was in the range of addresses in
that machine�s local memory
 If it wasn�t� the request was transferred to a cluster controller�
which would see if i belonged to any other memory within that cluster
 If not� the request
would be routed up the tree to another level of cluster controllers
 In all� 	� processors were
connected by three levels of buses

cm� was an early example of a non�uniform memory access �NUMA� architecture
 De�

pending on whether an item was in a processor�s local memory� within the same cluster� or in
another cluster� the time to fetch an item was ��s� ��s� or ���s� respectively
 As a reference
point� a PDP��� of this era� without the cluster interconnection logic� could fetch an item
from main memory in about ��s

One of the �rst commercial systems of this type was the BBN Butter�y
 As its name

implies� it consisted of a butter�y switch connecting up to �	� processors and memories
 The
processors were Motorola ����� single�chip microprocessors
 BBN added an extra path from
the processors to memory by pairing up each processor with one of the memory modules�

	�

so each processor had a 
favored� memory unit
 The processor could access this memory
directly without going through the switch
 The result was a NUMA architecture� with a
ratio of about �	�� in access times depending on whether the processor used the butter�y
switch or the direct connection


A recent commercial system in this category� with computing power and scalability that
could potentially make it widely used in computational science� is the KSR�� from Kendall
Square Research
 Processing elements are connected in rings� with from � to �� PEs per
ring
 Larger systems have a second level ring that connects up to �� �rst� level rings� for a
maximummachine size of ���� processors
 Each ring is unidirectional� i
e
 information �ows
in only one direction� with a bandwidth of � GB�sec


Each PE has a ��MB cache� but there is no primary memory
 This unusual organization
uses a cache directory to access all information
 When a processor makes a reference to an
item in location i� the cache line that contains i migrates around the rings until it reaches
the requesting processor
 If two or more processors need an item the hardware implements
the necessary cache coherency protocols to keep the items up to date
 This type of system
is also known as a shared virtual memory


The processors in the KSR�� are proprietary ���bit superscalar processors with a ��MHz
cycle time
 According to the LINPACK benchmark report� a single KSR�� processor achieves
�� MFLOPS out of a theoretical peak of �� MFLOPS on ��� � ��� Gaussian elimination

A ���node system reaches 	�� MFLOPS� a speedup of a factor of ��
	


����� Multiprocessor Vector Machines

Most of the vector supercomputer manufacturers produce multiprocessor systems based on
their vector processors
 Since a single node is so expensive and so �nely tuned to memory
bandwidth and other architectural parameters� the multiprocessor con�gurations have only
a few processors
 The largest currently is the Cray C���� which has up to �� processors


An ��processor Cray Y�MP is a shared memory MIMD system in the style of the BBN
Butter�y� with processors connected to a set of memories via a multistage switching network

The switching network is a ��level crossbar
 A major di�erence between the switching net�
works in the Butter�y and Y�MP is that in the Y�MP there are many more memorymodules
than processors since the individual processors were designed to connect to an interleaved
memory
 There are enough memory modules ! �� per processor ! and enough �exibility
in the switch to allow each processor to connect to several banks at once so it can transfer
vectors into and out of vector registers at a rate of one item per clock cycle
 The assignment
of virtual addresses to memory modules di�ers from the Butter�y arrangement� also� since
in the interleaved organization consecutive addresses need to be in di�erent modules
 An
exception to the rule that few processors are used in multiprocessor vector machines is a
����processor system recently announced by Fujitsu
 The nodes in this machine will be in�
terconnected via a large� single�stage crossbar switch
 Each node in the system consists of a
local interleavedmemory� a scalar processing unit� and a vector processing unit
 The network
interface implements a single address space from the individual local memories
 Each node
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in the VPP	�� will have a peak performance of about �
	 GFLOPS� so a full ��� processor
system will have a theoretical peak performance of over ��� GFLOPS


����� Distributed Memory MIMD Systems

An early and very in�uential distributed memory parallel processor was the 
Cosmic Cube��
a research project carried out by members of the Physics and Computer Science departments
at Caltech ����
 This was one of the �rst systems to treat the interconnection network as a
medium for exchanging messages� as opposed to an extended bus that simply fetched single
words


Each node in the Cosmic Cube was a single�board computer with an Intel ���� processor
chip� ���� �oating point coprocessor� and ���KB memory
 �� boards were interconnected
as a ��dimensional hypercube
 Communication over the interconnection network was fairly
slow� at �Mbps per link� and used a store and forward protocol
 Intel�s commercial version
of the Cosmic Cube was the iPSC��� which used ����� processor chips� 	��KB memory
per node� and ��Mbps communication chips� and came in con�gurations from �� to ���
processors �from �D up to �D hypercubes�
 Other commercial hypercubes of this era included
the NCUBE�� and FPS T�series


The iPSC�� was also a hypercube�based machine� but it incorporated 
worm�hole rout�
ing� in place of the store and forward packet switching used in earlier systems
 A worm�hole
router uses a form of circuit switching to establish a communication path between two pro�
cessors according to �xed rules
 For example� in the two dimensional mesh the rule might be
to use the vertical links �rst until the row of processors containing the destination processor
is reached and to then use the horizontal links until the connection is made
 E�ciency is
improved because the technique removes the requirement that each processor along a route
makes a decision about the direction of the next step of the communication
 This in e�ect
reduces the dependence of the diameter of the array on the number of steps required to
transmit a data item from one end of the system to the other
 What one gains in e�ciency
one loses in �exibility because worm�hole routing eliminates the opportunity to use alternate
paths that might be provided by the network
 For example� congestion on a single link may
be unavoidable even though alternate paths are available to ease the congestion


Following the iPSC�� �and the iPSC����� which was similar but used i��� RISC pro�
cessors instead of ����� processors at each node�� Intel built a research machine known as
the Touchstone Delta
 A commercial system based on the Delta is the Paragon XP�S
 The
interconnection network is a �D mesh instead of a hypercube� and uses specially designed
message routing chips to improve communication bandwidth
 Each node in the Paragon has
two i��� processors� one for computation and the other for message handling
 This second
processor deals with incoming messages and other overhead so the main processor does not
have to be interrupted to handle message tra�c


An interesting machine that is a hybrid with attributes of both SIMD and distributed
memory MIMD machines is the CM�	 from Thinking Machines
 The basic machine consists
of a tree of processing nodes� where each node has a SPARC microprocessor� optional vector
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processors� and up to ��MB of local memory
 The interconnection network is based on the
idea of a 
fat tree�� a tree that has wider communication channels near the root in order to
handle the higher volume of tra�c expected to �ow in that region of the network Figure ��
on page ��
 Each communication link in the CM�	 has a bandwidth of �� Mbps
 There are
two upward links from each leaf node
 The links are attached to di�erent switches� both for
higher bandwidth and to provide alternative routes to avoid congestion in the network
 First
level interior switches have two upward links� but higher level switches have four upward links
to implement the fat tree idea of higher bandwidth closer to the root


The CM�	 has a control network consisting of a set of control processors interconnected
with their another tree�shaped network
 The control processors and their tree are a com�
pletely separate subsystem
 Control processors are also SPARC microprocessors� but since
they do little if any data processing they do not have as much memory or any vector copro�
cessors
 It is the control network that allows the system to operate as an SIMD or SPMD
machine by synchronizing sets of data processors when they are all working on the same
program


����� SIMD Machines

Several commercial SIMD machines were introduced in the ����s� but they were not very
widely used
 Interest in this class of machines was renewed in the late ����s with the
introduction of the Connection Machine �CM��� from Thinking Machines� Inc
� and the
MasPar MP��
 Part of the renewed interest is certainly the result of VLSI technology� which
had advanced by that time to the point where several small processors could be put on a
single chip
 By themselves these processors were too simple to compete with general purpose
single�chip processors such as the Motorola ����� or Intel ������ but literally thousands of
them could be packaged in a small space and built into a cost�e�ective system
 For example�
�� MP�� processors �t on a single chip� and �� chips were placed on a single board� for a
total of ���� processors �and their associated memory� in approximately � square feet


The CM�� was based on ��bit processors
 Every operation in the machine processed ��bit
operands and produced ��bit results
 Operations on larger data elements� for example ���bit
integers� required one cycle per bit
 Attached to each processor was a local memory with
a capacity of �K bits
 Memory references� like processor operations� were ��bit operations�
i
e
 a fetch copied � bit from memory into a ��bit processor register
 �� processors were
implemented on a single chip
 Within a chip� processors were connected with a grid� and
up to ���� chips were connected via a ���dimensional hypercube
 All processors obeyed
instructions issued by a central control processor� which in turn was connected to a front�
end workstation


The MasPar MP�� was introduced a few years after the CM��
 It also has a very narrow
datapath� but it processes data � bits at a time instead of � bit at a time
 Each processor can
have up to ��KB of local memory
 One of the interesting aspects of the MP�� is that there
are two separate communication systems� and programmers can alternate between them to
choose the best performance for di�erent parts of their algorithms
 One interconnection

��
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network is known as the X�net �Figure ���
 It connects each processor to its � nearest
neighbors in a �D mesh with wraparound connections
 The other connection is a global
router� which provides point�to�point communication between any two PEs
 The router is
implemented by a ��stage switching network� where each stage in a �����processor machine
contains a ��� �� crossbar� together the three stages comprise a ����� ���� crossbar
 The
processors are controlled by a proprietary RISC processor known as the array control unit�
or ACU
 The ACU has its own local memory and is used for scalar operations� while the
processor array is intended for vector and array operations
 An MP�� can be con�gured as
an n � n square mesh or a n � �n rectangular mesh
 The smallest con�guration has �����
processors and the largest has ������ processors in a ��� � ��� grid


The newest machines from Thinking Machines and MasPar are the CM�	 and MP���
respectively
 The CM�	 is described in more detail in ��	�
 The MP�� has a wider internal
data path than the MP�� ! �� bits vs
 � bits ! but is otherwise very similar to the MP��
in that it uses both the X�net and global router to connect PEs in a �D mesh
 The largest
MP��� which has ������ ����� processors� has a theoretical peak performance of 		� MFLOPS
and reaches ��� MFLOPS on the LINPACK benchmark for parallel machines


��� Performance Models for Vector and Parallel Machines

Hockney and Jesshope ���� introduced two parameters to describe the performance of vector
processors
 The �rst parameter is the theoretical peak performance� or asymptotic perfor�

��

mance� denoted r�
 It is the maximum possible rate of computation� expressed as a number
of �oating point operations per second
 The parameter may be applied to a single vector
pipeline or to an entire system
 Thus r� for a single pipe of the Cray Y�MP is ��� MFLOPS
��ns cycle� one result per cycle�� and approximately �
� GFLOPS for an ��processor system
with the add and multiply units in operation simultaneously
 The other parameter� desig�
nated n��� and known as the half performance length� is the length of the vector for which a
system attains half of its peak performance� i
e
 ��	 � r� 
 n��� is a function of vector startup
time and pipeline depth
 As these values increase it becomes harder and harder to achieve
near peak performance for the system because it requires algorithms with longer and longer
vectors
 As we saw in section �
�� the startup times for the CDC vector computers were an
order of magnitude greater than those from Cray Research
 This is re�ected in n��� for the
two systems di�ering also by an order of magnitude
 Even though r� was higher for the
CDC machines� the systems from Cray proved more popular than those from CDC� so users
seem to �nd lower n��� more important

Perhaps the most fundamental performance question that can be asked of an algorithm

running on a parallel system is 
does it run faster� and if so by how much"�
 Ideally� if
one uses P processors to solve a given problem� the execution time would be cut by a factor
of P
 This leads to a de�nition of speedup� which is the ratio of the execution time on one
processor to the execution time on P processors�

SP �
Execution time using one processor

Execution time using P processors

For example� if a program takes �� minutes to run on one processor� but only �
� minutes
on four processors� the speedup is a factor of �������� � ���

The strength of such a measure is that it uses observed execution time and thus takes

into account any overhead in the parallel system for breaking a job into parallel tasks and
intertask communication time
 Comparing time on one processor vs
 time on P processors
can be misleading� however
 One might be tempted to write a program for a P �processor
machine� time it �rst on one processor and then on P processors� and call the ratio the
speedup
 Plotted for di�erent values of P this procedure gives an accurate measure of
the scalability of the algorithm used� but it does not answer the question how much faster a
problemmay be solved using P processors since a parallel algorithm usually incurs overheads
that are not found in sequential algorithms
 Ortega and Voigt ���� de�ned speedup as the
ratio of the solution time for the best serial algorithm with that required by the parallel
algorithm�

SP �
Execution time for the best serial algorithm on one processor

Execution time for parallel algorithm on P processors

In the �����s� Amdahl ��� noted that speedup is limited by the size of the portion of a
problem that is not executed faster
 For example� suppose a program that executes in ��
�
seconds contains a key subroutine that accounts for ��� of the execution time
 The rest of
the program uses ��� of the total time� or �
� seconds
 If we use a more e�cient version of
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the subroutine that runs twice as fast� total execution time will drop to �
� seconds ������
seconds for the subroutine� �
� seconds for the remainder of the program�
 If we �nd a parallel
subroutine that speeds up perfectly on P processors� and run the program on an ��processor
machine� execution time will drop to �
� seconds ������ seconds for the parallel portion� �
�
seconds for the sequential portion�
 If we run on ��� processors� the total execution time
will be �
�� seconds
 As more processors are used� the execution time gets closer to the time
required for the sequential part� but it can never get lower than this
 Since the fastest this
program will ever run is �
� seconds� no matter how many processors are used� the maximum
speedup is a factor of 	
�

If we normalize the formula that de�nes speedup by letting the sequential execution time

be � and expressing the other times as percentages of the sequential time� we derive the
following formulation of Amdahl�s law for parallel processors�

S �
�

�� � a� � a�SP

This version of the equation makes the contribution of the sequential portion of the com�
putation more apparent
 Here a is the fraction of the program that can be performed in
parallel� and thus �� � a� is the portion that is sequential
 The denominator is the time
to execute the program in parallel� i
e
 the sum of the time spent in the sequential portion
and the time spent in the parallel part� where the parallel time is a function of the speedup
factor of the parallel portion
 If the parallel portion exhibits perfect speedup� i
e
 a factor of
P when run on P processors� the equation becomes�

S �
�

��� a� � a�P

The e�ciency of a parallel computation is the ratio of the speedup to the number of
processors used to obtain that speedup�

EP �
SP

P

For example� if �� processors are used and the program runs �� times faster� we are running
at the maximumpossible speed� i
e
 all processors are being used to their full capacity
 If the
speedup is only a factor of 	� however� the e�ciency is 	��� � ��	� i
e
 half the computing
power is lost in overhead or synchronization

The above models do not try to characterize the execution of a parallel program
 They

simply measure the time required to execute a program on a given machine� and compare
that time to sequential execution times
 A simple model that breaks a parallel program into
constituent parts is

T � tcomp � tcomm � tsync

The three components of overall execution time are tcomp� the computation time� tcomm�
the time spent in communication� and tsync� the time used to synchronize the processors at

��

appropriate points in the algorithm
 This type of analysis is very important for algorithms
that will run on distributed memory machines� where locality and communication costs will
play a major role in e�ciency

Expressions for communication complexity can range from very simple� e
g
 all commu�

nication requires the same amount of time �a reasonable model in some cases for a shared
memory system�� to very complex� as would be required for an accurate model of a dis�
tributed memory system that communicates by message passing
 In the former case� the
number of accesses to memory times the average access time might su�ce
 In the latter case�
a more complex analysis is necessary for an accurate model
 For example� the time to send
a message from processor i to processor j in a packet switched network is often modeled by
an expression such as

a� b � np

where a is the overhead in setting up the message in the sending processor �and� if
necessary� storing a message in the receiving processor�� b is the distance from i to j� and np
is the length of the message in packets
 Again� this simple formula hides many additional
complexities that might or might not e�ect performance� the existence of a separate processor
at each processing node to handle messages� contention at links or nodes� whether or the
routing is �xed or dynamic� etc

The overhead for synchronization can also involve a number of issues depending on the

algorithm and the type of synchronization mechanism used
 For example� an SIMD system
automatically synchronizes parallel subtasks and no further modeling is required
 For MIMD
systems� in addition to the overhead associated with the actual synchronization process� there
is also the idle time created when processors wait at a synchronization point
 A thorough
discussion of synchronization mechanisms may be found in Andrews and Schneider ������

The development of a complexity model involving all three of the above factors in great
detail may be found in Reed and Patrick ����	�
 A general discussion of many of the issues
relative to linear algebra algorithms may be found in Ortega ������
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� Exercises

Exercise � The creation of a PMS diagram for one of the computer systems that you cur�
rently use�

Draw a PMS diagram for one of the systems you use
 The diagram should include at least
the size of main memory and cache� the processor�s�� and the pathways between processor�s�
and memory
 Consult ���� for more information on PMS if necessary


Exercise � The analyis of a computer system�

Write a program that creates two n�n matrices of random real numbers between � and
� and then computes the product of the two matrices
 n should be an input parameter
 The
only output from the program should be the time required to multiply the matrices


� Analyze the complexity of your program� i
e
 how many operations does it perform as
a function of the input size n"

� Construct a table of execution times as a function of the matrix size n
 Keep adding
entries until you have runs that take more than a few minutes
 Do the entries in the
table agree with your predicted performance model"

� Plot the data in the table with gnuplot or one of the other plotting packages described
in Chapter 
Scienti�c Visualization In High Performance Computing�


� From the data in the table can you tell when the matrices are large enough so they
don�t all �t in cache" How does this data point correlate with the size of the cache on
your system"

� If you have a vector processor� can you infer anything about optimum vector sizes from
the pattern of data in your table"

� If you are collecting your data on a workstation� record the system load average along
with the execution time
 Try several runs of the same matrix size but at times when
the load average is high� medium� and low
 Plot the data again� either with separate
lines for di�erent load averages� or with error bars that show the range of times
 Does
system load a�ect the performance of your program"

Exercise � A comparison of your calculated values versus the manufacturer�s reference val�
ues�

Look up 
MIPS� rating of your machine� either in the manuals provided by the man�
ufacturer or in a standard reference ���nd Dongarra�s numbers��
 How does it compare to
numbers you achieved in previous problem"

Exercise � Communication bandwidth between frame bu�er and monitor�

��

What is the communication bandwidth between the frame bu�er and the monitor in a
typical high resolution ��bit RGB display"

Exercise � Number of unique n�bit strings�

Use mathematical induction to prove there are �n unique n�digit strings composed only
of the symbols � and �


Exercise � Representation of a negative integer�

Prove that if b � b�b� � � � bn�� is the n�bit representation of the integer x� the two�s
complement of b� found by inverting every bit bi and adding �� is the representation of �x

Hint� the value of the complement of bi is �� bi


Exercise � Bit shifts and mathematical operations�

�a� Prove that if b � b�b� � � � bn�� is the n�bit representation of the integer x� then �a�
shifting b left by i bits is equivalent to multiplying x by �i and �b� shifting b right by i bits
is equivalent to dividing x by �i �ignoring any remainder�

�b� If b� � �� b represents a negative number in a two�s complement system
 In what

is known as a 
logical shift right� ��s are inserted into the leftmost bits� which means the
result will be a positive number
 Obviously if we divide a negative number by a power of
two we expect a negative result� and in this case the logical shift doesn�t give the correct
answer
 For example� ���� � � ��
 The ��bit two�s complement representation of ��� is
��������
 If we shift it right by two bits to divide by �� we get ��������� which represents
��� not ��
 Can you think of a simple way to 
�x� the shift operation so that it gives the
correct result when it shifts both positive and negative numbers"

Exercise 	 Low order bits and division by powers of 	�

Prove that if b � b�b� � � � bn�� is the n�bit representation of the integer x� the low order i
bits are the value of the remainder of b � �i
 NOTE� this operation is also performed very
e�ciently on most machines
 Let m be a pattern known as a 
mask� that contains ��s in the
high order n� i bits and ��s in the low order i bits
 An operation known as a 
bitwise AND�
will compute a pattern x such that xi � bi 
mi �the 
 operation is the logical AND� which
is � if and only if both operands are ��
 To �nd the remainder of a division by �i� create a
mask with i ��s in the low order bits� then 
and� it with b
 For example� the remainder of ��
��������� in an ��bit system� divided by � � �� is �������� 
 �������� � �������� � ��� 


Exercise 
 Floating point numbers on your system�

Explain the �oating point number system on the machine that you are using

Look up the representation for �oating point numbers in the system you will be using for

this course
 Does it conform to the IEEE standard �standard �	��" How many bits are in
the mantissa and exponent in single precision" In double precision" Does a double precision
number really have twice as much precision as a single precision number" Explain
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Figure ��� Gantt chart for ��way interleaved memory

Exercise �� An analysis of memory cycle time�

A Gantt chart can be used to show how interleavedmemoryworks by drawing one row for
each memory bank
 Mark the time line in units of processor cycles
 If a processor requests
an item from bank b at time t� draw a line in row b starting at time t and continuing for
n units� where n is the memory cycle time
 Figure �� shows the Gantt chart for an ��way
interleaved memory in a system where the processor cycle time is ��ns and the memory cycle
time is ��ns
 The chart illustrates which memories are busy when the processor requests
items from successive memory cells
 Asterisks on the time line indicate when data items
reach the processor �assuming data is delivered on the last memory cycle�
 Asterisks in
every column indicate the memory is performing at its full potential� i
e
 there are no bank
con�icts

Use a Gantt chart to show that for a system with �� memory banks� ��
	ns processor

cycle time� and 	�ns memory cycle time� there will be no con�icts when the stride is � or
�� but there will be con�icts when the stride is � or ��
 �NOTE� these cycle times and
interleaving factors are taken from the Cray���


Exercise �� An illustration of vector chaining�

Use a Gantt chart to illustrate the e�ectiveness of vector chaining
 Use the following
parameters� the length of each vector is �� elements� the multiply pipeline is � stages deep�
the add pipeline has � stages� and there is a one�cycle delay �called the chain slot time� after
producing the �rst product before the �rst pair of operands go to the adder
 How many
cycles does it take to compute V� � V���V��V�� without chaining" With chaining"

��

(a) Hypercube (b) Cube-connected cycle

Figure ��� A single vertex in a �D cube

Exercise �� Registers and the performance of the SAXPY benchmark�

What is your understanding of the connection between scalar registers� vector registers�
and �oating point units for the performance of the SAXPY benchmark"
Does vector chaining improve performance on the SAXPY benchmark" What could you

infer about the organization of the data path and the connection between scalar registers�
vector registers� and �oating point units if you measured the performance of SAXPY and
found out that operands were indeed being chained between data units"

Exercise �� A cosideration of a parallel machine with a hypercube topology�

Each vertex of a d�dimensional hypercube is connected to d other vertices
 In a parallel
machine with a hypercube topology� there is a single processor at each node� and it is linked
to d other processors
 An alternative design is to place a ring of d processors at each vertex�
linking the ith processor to the neighboring vertex along dimension i
 The result is a topology
known as a cube�connected cycle �CCC� �Figure ���
 Every node in a CCC is connected to
� other nodes� its two neighbors in the ring plus the node in the neighboring vertex
 Thus
a CCC has a constant degree� no matter how many nodes are in the topology

�a� What is the diameter of a CCC �assume bidirectional communication�

�b� How many nodes are in a general n�dimensional CCC"
�c� Draw a picture of a ��dimensional CCC


Exercise �� Same as above
 but for May�y�s hexagonal mesh�

Exercise �� A determination of the paths for some messages for a �D and �D hypercube�
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Label the nodes in the �d and �d hypercubes in Figure ��
 In the �D cube� draw the
paths that are taken by the following messages� from � to �	� from � to ��� from 	 to ���
and from �� to 	


Exercise �� A determination of the two di�erent paths taken by messages between two
processors in a hypercube�

You may have noticed in the previous exercise that the message from node 	 to node ��
travels a di�erent path than the message from node �� to node 	
 Explain why� for any two
processors i and j� messages sent from i to j travel a di�erent path than messages from j to
i
 Can you characterize the relationship between the two paths"

Exercise �� A determination of the processor�memory connections for a butter�y switch
arrangement�

For each interior node in the butter�y switch of �gure Figure �	� indicate whether it is
in the straight� through or �ipped con�guration for the following pairs of processor�memory
connections
 Assume the connections that come �rst in the list are made �rst by the switching
network�
P�� M�� P��M	� P��M�� P��M�� P��M�� P	�M�� P��M�� P��M�
How many of these connections block due to contention in the switch"

Exercise �	 A determination of the PMS diagram for the crossbar switch connecting the
processing elements of a MasPar MP�
 and a Fujitsu VPP����

Most of the uses of a crossbar switch mentioned in this chapter connect a set of processors
on the 
input� side to a set of memories on the 
output� side �Figure ���
 However� two
systems� the Fujitsu VPP	�� and the MasPar MP��� use a crossbar to interconnect processing
elements �PEs�� nodes which consist of a processor and its local memory
 Draw a PMS
diagram of such a system and explain how information could be moved from one node to
another


Exercise �
 A consideration of some of the communication that takes place on a KSR�
�

The ring network in the KSR�� is a slotted ring� which means packets �ow around the
ring in discrete steps under control of a global clock
 The KSR�� transfers ��� million packets
per second past each slot on the ring

�a� The bandwidth is �GB�sec
 How wide is the communication channel"
�b� The processor cycle time is ��MHz
 How many packets can be taken o� the ring

during each processor cycle"
�c� What is the diameter of a full�size ������PE� KSR��"
�d� Ignoring communication overhead and the possibility of contention that would de�

lay a message� how long will it take the machine to transfer �	� bytes along the longest
communication path"

��

Exercise �� A plot of Amdahl�s law�

Use gnuplot or some other plotting package to plot Amdahl�s law for di�erent values of
P 
 Note that a varies from � to �� i
e
 from completely sequential to completely parallel
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