
Annex BLega
y BLASB.1 Introdu
tionThis
hapter addresses additional language bindings for the original Level 1, 2, and 3 BLAS. TheLevel 1, 2, and 3 BLAS will hereafter be referred to as the Lega
y BLAS.B.2 C interfa
e to the Lega
y BLASThis se
tion gives a detailed dis
ussion of the proposed C interfa
e to the lega
y BLAS. Everymention of \BLAS" in this
hapter should be taken to mean the lega
y BLAS. Ea
h interfa
ede
ision is dis
ussed in its own se
tion. Ea
h se
tion also
ontains a Considered methods subse
tion,where other solutions to that parti
ular problem are dis
ussed, along with the reasons why thoseoptions were not
hosen. These Considered methods subse
tions are indented and itali
ized in orderto distinguish them from the rest of the text.It is largely agreed among the group (and unanimous among the vendors) that user demandfor a C interfa
e to the BLAS is insuÆ
ient to motivate vendors to support a
ompletely separatestandard. This proposal therefore
on�nes itself to an interfa
e whi
h
an be readily supported ontop of the already existing Fortran 77
allable BLAS (i.e., the lega
y BLAS).The interfa
e is expressed in terms of ANSI/ISO C. Very few platforms fail to provide ANSI/ISOC
ompilers at this time, and for those platforms, free ANSI/ISO C
ompilers are almost alwaysavailable (eg., g

).B.2.1 Naming s
hemeThe naming s
heme
onsists of taking the Fortran 77 routine name, making it lower
ase, andadding the pre�x
blas . Therefore, the routine DGEMM be
omes
blas dgemm.Considered methodsVarious other naming s
hemes have been proposed, su
h as adding C or
 to thename. Most of these s
hemes a

omplish the requirement of separating the Fortran 77and C name spa
es. It was argued, however, that the addition of the blas pre�x uni�esthe naming s
heme in a logi
al and useful way (making it easy to sear
h for BLAS usein a
ode, for instan
e), while not pla
ing too great a burden on the typist. The letter
is used to distinguish this language interfa
e from possible future interfa
es.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 181B.2.2 Indi
es and I AMAXThe Fortran 77 BLAS return indi
es in the range 1 � I � N (where N is the number of entriesin the dimension in question, and I is the index), in a

ordan
e with Fortran 77 array indexing
onventions. This allows fun
tions returning indi
es to be dire
tly used to index standard arrays.The C interfa
e therefore returns indi
es in the range 0 � I < N for the same reason.The only BLAS routine whi
h returns an index is the fun
tion I AMAX. This fun
tion is de
laredto be of type CBLAS INDEX, whi
h is guaranteed to be an integer type (i.e., no
ast is required whenassigning to any integer type). CBLAS INDEX will usually
orrespond to size t to ensure any array
an be indexed, but implementors might
hoose the integer type whi
h mat
hes their Fortran 77INTEGER, for instan
e. It is de�ned that zero is returned as the index for a zero length ve
tor (eg.,For N = 0, I AMAX will always return zero).B.2.3 Chara
ter argumentsAll arguments whi
h were
hara
ters in the Fortran 77 interfa
e are handled by enumerated typesin the C interfa
e. This allows for tighter error
he
king, and provides less opportunity for usererror. The
hara
ter arguments present in the Fortran 77 interfa
e are: SIDE, UPLO, TRANSPOSE,and DIAG. This interfa
e adds another su
h argument to all routines involving two dimensionalarrays, ORDER. The standard di
tates the following enumerated types:enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};Considered methodsThe other two most
ommonly suggested methods were a

epting these arguments aseither
har * or
har. It was noted that both of these options require twi
e as many
omparisons as normally required to bran
h (so that the
hara
ter may be either upperor lower
ase). Both methods also su�ered from ambiguity (what does it mean to haveDIAG='H', for instan
e). If
har was
hosen, the words
ould not be written out as they
an for the Fortran 77 interfa
e (you
ouldn't write "NoTranspose"). If
har * wereused, some
ompilers might fail to optimize string
onstant use,
ausing unne
essarymemory usage.The main advantage of enumerated data types, however, is that mu
h of the error
he
king
an be done at
ompile time, rather than at runtime (i.e., if the user fails topass one of the valid options, the
ompiler
an issue the error).There was mu
h dis
ussion as to whether the integer values should be spe
i�ed, orwhether only the enumerated names should be so spe
i�ed. The group
ould �nd nosubstansive way in whi
h spe
ifying the integer values would restri
t an implementor,and spe
ifying the integer values was seen as an aid to inter-language
alls.B.2.4 Handling of
omplex data typesAll
omplex arguments are a

epted as void *. A
omplex element
onsists of two
onse
utivememory lo
ations of the underlying data type (i.e., float or double), where the �rst lo
ation
ontains the real
omponent, and the se
ond
ontains the imaginary part of the number.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

182 ANNEX B. LEGACY BLASIn pra
ti
e, programmers' methods of handling
omplex types in C vary. Some use various datastru
tures (some examples are dis
ussed below). Others a

ept
omplex numbers as arrays of theunderlying type.Complex numbers are a

epted as void pointers so that widespread type
asting will not berequired to avoid warning or errors during
ompilation of
omplex
ode.An ANSI/ISO
ommittee is presently working on an extension to ANSI/ISO C whi
h de�nes
omplex data types. The de�nition of a
omplex element is the same as given above, and so thehandling of
omplex types by this interfa
e will not need to be
hanged when ANSI/ISO C standardis extended.Considered methodsProbably the most strongly advo
ated alternative was de�ning
omplex numbers viaa stru
ture su
h asstru
t NON PORTABLE COMPLEX ffloat r; float i;g; The main problem with thissolution is the la
k of portability. By the ANSI/ISO C standard, elements in a stru
tureare not guaranteed to be
ontiguous. With the above stru
ture, padding between elementshas been experimentally observed (on the CRAY T3D), so this problem is not purelytheoreti
al.To get around padding problems within the stru
ture, a stru
ture su
h asstru
t NON PORTABLE COMPLEX ffloat v[2℄;g; has been suggested. With this stru
-ture there will obviously be no padding between the real and imaginary parts. However,there still exists the possibility of padding between elements within an array. More im-portantly, this stru
ture does not lend itself nearly as well as the �rst to
ode
larity.A �nal proposal is to de�ne a stru
ture whi
h may be addressed the same as theone above (i.e., ptr->r, ptr->i), but whose a
tual de�nition is platform dependent.Then, hopefully, various vendors will either use the above stru
ture and ensure viatheir
ompilers its
ontiguousness, or they will
reate a di�erent stru
ture whi
h
an bea

essed in the same way.This requires vendors to support something whi
h is not in the ANSI C standard,and so there is no way to ensure this would take pla
e. More to the point, use of su
h astru
ture turns out to not o�er mu
h in the way of real advantage, as dis
ussed in thefollowing se
tion.All of these approa
hes require the programmer to either use the spe
i�ed data typethroughout the
ode whi
h will
all the BLAS, or to perform type
asting on ea
h BLAS
all. When
omplex numbers are a

epted as void pointers, no type
asting or data typeis di
tated, with the only restri
tion being that a
omplex number have the de�nitiongiven above.B.2.5 Return values of
omplex fun
tionsBLAS routines whi
h return
omplex values in Fortran 77 are instead re
ast as subroutines in theC interfa
e, with the return value being an output parameter added to the end of the argumentlist. This allows the output parameter to be a

epted as void pointers, as dis
ussed above.Further, the name is suÆxed by sub. There are two main reasons for this name
hange.First, the
hange from a fun
tion to a subroutine is a signi�
ant
hange, and thus the name shouldre
e
t this. More importantly, the \traditional" name spa
e is spe
i�
ally reserved for use when theforth
oming ANSI/ISO C extension is �nalized. When this is done, this C interfa
e will be extended

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 183to in
lude fun
tions using the \traditional" names whi
h utilize the new ANSI/ISO
omplex typeto return the values.Considered methodsThis is the area where use of a stru
ture is most desired. Again, the most
ommonsuggestion is a stru
ture su
h as stru
t NON_PORTABLE_COMPLEX {float r; float i;};.If one is willing to use this stru
ture throughout one's
ode, then this provides anatural and
onvenient me
hanism. If, however, the programmer has utilized a di�erentstru
ture for
omplex, this ease of use breaks down. Then, something like the following
ode fragment is required:NON_PORTABLE_COMPLEX
tmp;float
dot[2℄;
tmp =
blas_
dot
(n, x, 1, y, 1);
dot[0℄ =
tmp.r;
dot[1℄ =
tmp.i;whi
h is
ertainly mu
h less
onvenient than:
blas_
dot
_sub(n, x, 1, y, 1,
dot).It should also be noted that the primary reason for having a fun
tion instead of asubroutine is already invalidated by C's la
k of a standard
omplex type. Fun
tionsare most useful when the result may be used dire
tly as part of an in-line
omputation.However, sin
e ANSI/ISO C la
ks support for
omplex arithmeti
 primitives or operatoroverloading,
omplex fun
tions
annot be standardly used in this way. Sin
e the fun
tion
annot be used as a part of a larger expression, nothing is lost by re
asting it as asubroutine; indeed a slight performan
e win may be obtained.B.2.6 Array argumentsArrays are
onstrained to being
ontiguous in memory. They are a

epted as pointers, not as arraysof pointers.All BLAS routines whi
h take one or more two dimensional arrays as arguments re
eive oneextra parameter as their �rst argument. This argument is of the enumerated typeenum CBLAS ORDER fCblasRowMajor=101, CblasColMajor=102g;.If this parameter is set to CblasRowMajor, it is assumed that elements within a row of the array(s)are
ontiguous in memory, while elements within array
olumns are separated by a
onstant stridegiven in the stride parameter (this parameter
orresponds to the leading dimension [e.g. LDA℄ inthe Fortran 77 interfa
e).If the order is given as CblasColMajor, elements within array
olumns are assumed to be
ontiguous, with elements within array rows separated by stride memory elements.Note that there is only one CBLAS ORDER parameter to a given routine: all array operands arerequired to use the same ordering.Considered methodsThis solution
omes after mu
h dis
ussion. C users appear to split roughly into two
amps. Those people who have a history of mixing C and Fortran 77 (in parti
ularmaking use of the Fortran 77 BLAS from C), tend to use
olumn-major arrays in orderto allow ease of inter-language operations. Be
ause of the
exibility of pointers, this is

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

184 ANNEX B. LEGACY BLASnot appre
iably harder than using row-major arrays, even though C \natively" possessesrow-major arrays.The se
ond
amp of C users are not interested in overt C/Fortran 77 interoperability,and wish to have arrays whi
h are row-major, in a

ordan
e with standard C
onven-tions. The idea that they must re
ast their row-oriented algorithms to
olumn-majoralgorithms is una

eptable; many in this
amp would probably not utilize any BLASwhi
h enfor
ed a
olumn-major
onstraint.Be
ause both
amps are fairly widely represented within the target audien
e, it isimpossible to
hoose one solution to the ex
lusion of the other.Column-major array storage
an obviously be supported dire
tly on top of the lega
yFortran 77 BLAS. Re
ent work, parti
ularly
ode provided by D.P. Manley of DEC, hasshown that row-major array storage may also be supported in this way with little
ost.Appendix B.2.12 dis
usses this issue in detail. To preview it here, we
an say the level1 and 3 BLAS require no extra operations or storage to support row-major operationson top of the lega
y BLAS. Level 2 real routines also require no extra operations orstorage. Some
omplex level 2 routines involving the
onjugate transpose will requireextra storage and operations in order to form expli
it
onjugates. However, this willalways involve ve
tors, not the matrix. In the worst
ase, we will need n extra storage,and 3n sign
hanges.One proposal was to a

ept arrays as arrays of pointers, instead of as a single pointer.The problems with this approa
h are manifold. First, the existing Fortran 77 BLAS
ould not be used, sin
e they demand
ontiguous (though strided) storage. Se
ond, thisapproa
h requires users of standard C 2D arrays or 1D arrays to allo
ate and assign theappropriate pointer array.Beyond this, many of the ve
tors used in level 1 and level 2 BLAS
ome from rowsor
olumns of two dimensional arrays. Elements within
olumns of row-major arraysare not uniformly strided, whi
h means that a n-element
olumn ve
tor would need npointers to represent it. This then leads to ve
tors being a

epted as arrays of pointersas well.Now, assuming both our one and two dimensional arrays are a

epted as arrays ofpointers, we have a problem when we wish to perform sub-array a

ess. If we wish topass an m�n subse
tion of a this array of pointers, starting at row i and
olumn j, wemust allo
ate m pointers, and assign them in a se
tion of
ode su
h as:float **A, **subA;subA = mallo
(m*sizeof(float*));for (k=0; k != m; k++) subA[k℄ = A[i+k℄ + j;
blas_rout(... subA ...);The same operation must be done if we wish to use a row or
olumn as a ve
tor.This is not only an in
onvenien
e, but
an add up to a non-negligible performan
e lossas well.A �x for these problems is that one and two dimensional arrays be passed as arraysof pointers, and then indi
es are passed in to indi
ate the sub-portion to a

ess. Thusyou have a
all that looks like:
blas_rout(... A, i, j, ...);. This solution stillrequires some additional tweaks to allow using two dimensional array rows and
olumnsas ve
tors. Users presently using C 2D arrays or 1D arrays would have to mallo
 the

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 185array of pointers as shown in the pre
eding example in order to use this kind of interfa
e.At any rate, a library a

epting pointers to pointers
annot be supported on top of theFortran 77 BLAS, while one supporting simple pointers
an.If the programmer is utilizing the pointer to pointer style of array indexing, it is stillpossible to use this library providing that the user ensures that the operand matrix is
ontiguous, and that the rows are
onstantly strided. If this is the
ase, the user maypass the operand matrix to the library in pre
i
ely the same way as with a 2D C array:
blas_rout(... &A[i℄[j℄ ...);.Example 1: making a library
all with a C 2D array:double A[50℄[25℄; /* standard C 2D array */
blas_rout(CblasRowMajor, ... &A[i℄[j℄, 25, ...);Example 2: Legal use of pointer to pointer style programming and theCBLASdouble **A, *p;A = mallo
(M);p = mallo
(M*N*sizeof(double));for (i=0; i < M; i++) A[i℄ = &p[i*N℄;
blas_rout(CblasRowMajor, ... &A[i℄[j℄, N, ...);Example 3: Illegal use of pointer to pointer style programming and theCBLASdouble **A, *p;A = mallo
(M);p = mallo
(M*N*sizeof(double));for (i=0; i < M; i++) A[i℄ = mallo
(N*sizeof(double));
blas_rout(CblasRowMajor, ... &A[i℄[j℄, N, ...);Note that Example 3 is illegal be
ause the rows of A have no guaranteed stride.B.2.7 Aliasing of argumentsUnless spe
i�ed otherwise, only input-only arguments (spe
i�ed with the
onst quali�er), may belegally aliased on a
all to the C interfa
e to the BLAS.Considered methodsThe ANSI C standard allows for the aliasing of output arguments. However, allowing this often
arries a substantial performan
e penalty. This, along with the fa
t that Fortran 77 (whi
h wehope to
all for optimized libraries) does not allow aliasing of output arguments, led us to makethis restri
tion.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

186 ANNEX B. LEGACY BLASB.2.8 C interfa
e in
lude �leThe C interfa
e to the BLAS will have a standard in
lude �le,
alled
blas.h, whi
h minimally
ontains the de�nition of the CBLAS types and ANSI/ISO C prototypes for all BLAS routines.It is not an error to in
lude this �le multiple times. Refer to se
tion B.2.11 for an example of aminimal
blas.h.ADVICE TO THE IMPLEMENTOR:Note that the vendor is not
onstrained to using pre
isely this in
lude �le; only the enumerated typede�nitions are fully spe
i�ed. The implementor is free to make any other
hanges whi
h are notapparent to the user. For instan
e, all matrix dimensions might be a

epted as size t instead ofint, or the implementor might
hoose to make some routines inline.B.2.9 Error
he
kingThe C interfa
e to the lega
y BLAS must supply error
he
king
orresponding to that provided bythe referen
e Fortran 77 BLAS implementation.B.2.10 Rules for obtaining the C interfa
e from the Fortran 77� The Fortran 77 routine name is
hanged to lower
ase, and pre�xed by
blas .� All routines whi
h a

ept two dimensional arrays (i.e., level 2 and 3), a
quire a new parameterof type CBLAS ORDER as their �rst argument, whi
h determines if the two dimensional arraysare row or
olumn major.� Chara
ter arguments are repla
ed by the appropriate enumerated type, as shown in Se
-tion B.2.3.� Input arguments are de
lared with the
onst modi�er.� Non-
omplex s
alar input arguments are passed by value. This allows the user to put in
onstants when desired (eg., passing 10 on the
ommand line for N).� Complex s
alar input arguments are passed as void pointers, sin
e they do not exist as aprede�ned data type in ANSI/ISO C.� Array arguments are passed by address.� Output s
alar arguments are passed by address.� Complex fun
tions be
ome subroutines whi
h return the result via a void pointer, added asthe last parameter. The name is suÆxed with sub.B.2.11
blas.h in
lude �leThe
blas.h in
lude �le
an be found on the BLAS Te
hni
al Forum webpage:http://www.netlib.org/blas/blast-forum/
blas.h

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 187B.2.12 Using Fortran 77 BLAS to support row-major BLAS operationsThis se
tion is not part of the standard per se. Rather, it exists as an advi
e to the implementoron how row-major BLAS operations may be implemented using
olumn-major BLAS. This allowsvendors to leverage years of Fortran 77 BLAS developement in produ
ing the C BLAS.Before this issue is examined in detail, a few general observations on array storage are helpful.We must distinguish between the matrix and the array whi
h is used to store the matrix. Thematrix, and its rows and
olumns, have mathemati
al meaning. The array is simply the method ofstoring the matrix, and its rows and
olumns are signi�
ant only for memory addressing.Thus we see we
an store the
olumns of a matrix in the rows of an array, for instan
e. Whenthis o

urs in the BLAS, the matrix is said to be stored in transposed form.A row-major array stores elements along a row in
ontiguous storage, and separates the
olumnelements by some
onstant stride (often the a
tual length of a row). Column-major arrays have
ontiguous
olumns, and strided rows. The importan
e of this is to note that a row-major arraystoring a matrix in the natural way, is a transposed
olumn-major array (i.e., it
an be thought ofas a
olumn-major array where the rows of the matrix are stored in the
olumns of the array).Similarly, an upper triangular row-major array
orresponds to a transposed lower triangular
olumn-major array (the same is true in reverse [i.e., lower-to-upper℄, obviously). To see this,simply think of what a upper triangular matrix stored in a row-major array looks like. The �rst nentries
ontain the �rst matrix row, followed by a non-negative gap, followed by the se
ond matrixrow.If this same array is viewed as
olumn-major, the �rst n entries are a
olumn, instead of a row,so that the
olumns of the array store the rows of the matrix (i.e., it is transposed). This meansthat if we wish to use the Fortran 77 (
olumn-major) BLAS with triangular matri
es
oming fromC (possibly row-major), we will be reversing the setting of UPLO, while simultaneously reversingthe setting of TRANS (this gets slightly more
ompli
ated when the
onjugate transpose is involved,as we will see).Finally, note that if a matrix is symmetri
 or Hermitian, its rows are the same as its
olumns,so we may merely swit
h UPLO, without bothering with TRANS.In the BLAS, there are two separate
ases of importan
e. one dimensional arrays (storage forve
tors) have the same meaning in both C and Fortran 77, so if we are solving a linear algebraproblem who's answer is a ve
tor, we will need to solve the same problem for both languages.However, if the answer is a matrix, in terms of
alling routines whi
h use
olumn-major storagefrom one using row-major storage, we will want to solve the transpose of the problem.To get an idea of what this means,
onsider a
ontrived example. Say we have routines forsimple matrix-matrix and matrix-ve
tor multiply. The ve
tor operation is y A � x, and thematrix operation is C A � B. Now say we are implementing these as
alls from row-majorarray storage to
olumn-major storage. Sin
e the matrix-ve
tor multiply's answer is a ve
tor, theproblem we are solving is remains the same, but we must remember that our C array A is a Fortran77 AT . On the other hand, the matrix-matrix multiply has a matrix for a result, so when thedi�ering array storage is taken into a

ount, the problem we want to solve is CT BT �AT .This last example demonstrates another general result. Some level 3 BLAS
ontain a SIDEparameter, determining whi
h side a matrix is applied on. In general, if we are solving the transposeof this operation, the side parameter will be reversed.With these general prin
iples, it is possible to show that all that row-major level 3 BLAS
anbe expressed in terms of
olumn-major BLAS without any extra array storage or extra operations.In the level 2 BLAS, no extra storage or array a

esses are required for the real routines. Complexroutines involving the
onjugate transpose, however, may require a n-element temporary, and up

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

188 ANNEX B. LEGACY BLASto 3n more operations (vendors may avoid all extra workspa
e and operations by overloading theTRANS option for the level 2 BLAS: letting it also allow
onjugation without doing the transpose).The level 1 BLAS, whi
h deal ex
lusively with ve
tors, are una�e
ted by this storage issue.With these ideas in mind, we will now show how to support a row-major BLAS on top of a
olumn major BLAS. This information will be presented in tabular form. For brevity, row-majorstorage will be referred to as
oming from C (even though
olumn-major arrays
an also
ome fromC), while
olumn-major storage will be referred to as F77.Ea
h table will show a BLAS invo
ation
oming from C, the operation that the BLAS shouldperform, the operation required on
e F77 storage is taken into a

ount (if this
hanges), and the
allto the appropriate F77 BLAS. Not every possible
ombination of parameters is shown, sin
e manyare simply re
e
tions of another (i.e., when we are applying the Upper, NoTranspose be
omesLower, Transpose rule, we will show it for only the upper
ase. In order to make the notationmore
on
ise, let us de�ne x to be
onj(x).Level 2 BLASGEMVC
all
blas
gemv(CblasRowMajor, CblasNoTrans, m, n, �, A, lda, x, in
x, �, y, in
y)op y �Ax+ �yF77
all CGEMV('T', n, m, �, A, lda, x, in
x, �, y, in
y)C
all
blas
gemv(CblasRowMajor, CblasTrans, m, n, �, A, lda, x, in
x, �, y, in
y)op y �ATx+ �yF77
all CGEMV('N', n, m, �, A, lda, x, in
x, �, y, in
y)C
all
blas
gemv(CblasRowMajor, CblasConjTrans, m, n, �, A, lda, x, in
x, �, y, in
y)op y �AHx+ �y) (y �ATx+ �y)F77
all CGEMV('N', n, m, �, A, lda, x, 1, �, y, in
y)Note that we swit
h the value of transpose to handle the row/
olumn major ordering di�eren
e.In the last
ase, we will require n elements of workspa
e so that we may store the
onjugated ve
torx. Then, we set y = y, and make the
all. This gives us the
onjugate of the answer, so we on
eagain set y = y. Therefore, we see that to support the
onjugate transpose, we will need to allo
atean n-element ve
tor, and perform 2m+ n extra operations.SYMVSYMV requires no extra workspa
e or operations.C
all
blas
symv(CblasRowMajor, CblasUpper, n, �, A, lda, x, in
x, �, y, in
y)op y �Ax+ �y) y �ATx+ �yF77
all CSYMV('L', n, �, A, lda, x, in
x, �, y, in
y)HEMVHEMV routine requires 3n
onjugations, and n extra storage.C
all
blas
hemv(CblasRowMajor, CblasUpper, n, �, A, lda, x, in
x, �, y, in
y)op y �Ax+ �y) y �AHx+ �y) (y �ATx+ �y)F77
all CHEMV('L', n, �, A, lda, x, in
x, �, y, in
y)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 189TRMV/TRSVC
all
blas
trmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, lda, x, in
x)op x AxF77
all CTRMV('L', 'T', diag, n, A, lda, x, in
x)C
all
blas
trmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, in
x)op x ATxF77
all CTRMV('L', 'N', diag, n, A, lda, x, in
x)C
all
blas
trmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, in
x)op x AHx) (x = ATx)F77
all CTRMV('L', 'N', diag, n, A, lda, x, in
x)Again, we see that we will need some extra operations when we are handling the
onjugatetranspose. We
onjugate x before the
all, giving us the
onjugate of the answer we seek. We then
onjugate this again to return the
orre
t answer. This routine therefore needs 2n extra operationsfor the
omplex
onjugate
ase.The
alls with the C array being Lower are merely the re
e
tion of these
alls, and thus arenot shown. The analysis for TRMV is the same, sin
e it involves the same prin
iple of what atranspose of a triangular matrix is.GER/GERUThis is our �rst routine that has a matrix as the solution. Re
alling that this means we solve thetranspose of the original problem, we get:C
all
blas
geru(CblasRowMajor, m, n, �, x, in
x, y, in
y, A, lda)C op A �xyT +AF77 op AT �yxT +ATF77
all CGERU(n, m, �, y, in
y, x, in
x, A, lda)No extra storage or operations are required.GERCC
all
blas
ger
(CblasRowMajor, m, n, �, x, in
x, y, in
y, A, lda)C op A �xyH +AF77 op AT �(xyH)T +AT = �yxT +ATF77
all CGERU(n, m, �, y, in
y, x, in
x, A, lda)Note that we need to allo
ate n-element workspa
e to hold the
onjugated y, and we
all GERU,not GERC.HERC
all
blas
her(CblasRowMajor, CblasUpper, n, �, x, in
x, A, lda)C op A �xxH +AF77 op AT �xxT +ATF77
all CHER('L', n, �, x, 1, A, lda)Again, we have an n-element workspa
e and n extra operations.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

190 ANNEX B. LEGACY BLASHER2C
all
blas
her2(CblasRowMajor, CblasUpper, n, �, x, in
x, y, in
y, A, lda)C op A �xyH + y(�x)H +AF77 op AT �yxT + �xyT +AT = �y(x)H + x(�y)H +ATF77
all CHER2('L', n, �, y, 1, x, 1, A, lda)So we need 2n extra workspa
e and operations to form the
onjugates of x and y.SYRC
all
blas ssyr(CblasRowMajor, CblasUpper, n, �, x, in
x, A, lda)C op A �xxT +AF77 op AT �xxT +ATF77
all SSYR('L', n, �, x, in
x, A, lda)No extra storage or operations required.SYR2C
all
blas ssyr2(CblasRowMajor, CblasUpper, n, �, x, in
x, y, in
y, A, lda)C op A �xyT + �yxT +AF77 op AT �yxT + �xyT +ATF77
all SSYR2('L', n, �, y, in
y, x, in
x, A, lda)No extra storage or operations required.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 191Level 3 BLASGEMMC
all
blas
gemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �AB + �CF77 op CT �BTAT + �CTF77
all CGEMM('N', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ABT + �CF77 op CT �BAT + �CTF77
all CGEMM('T', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ABH + �CF77 op CT �BAT + �CTF77
all CGEMM('C', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ATB + �CF77 op CT �BTA+ �CTF77
all CGEMM('N', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ATBT + �CF77 op CT �BA+ �CTF77
all CGEMM('T', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ATBH + �CF77 op CT �BA+ �CTF77
all CGEMM('C', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �AHB + �CF77 op CT �BTA+ �CTF77
all CGEMM('N', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �AHBT + �CF77 op CT �BA+ �CTF77
all CGEMM('T', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld
)C
all
blas
gemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �AHBH + �CF77 op CT �BA+ �CTF77
all CGEMM('C', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld
)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

192 ANNEX B. LEGACY BLASSYMM/HEMMC
all
blas
hemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ld
)C op C �AB + �CF77 op CT �BTAT + �CTF77
all CHEMM('R', 'L', n, m, �, A, lda, B, ldb, �, C, ld
)C
all
blas
hemm(CblasRowMajor, CblasRight, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ld
)C op C �BA + �CF77 op CT �ATBT + �CTF77
all CHEMM('L', 'L', n, m, �, A, lda, B, ldb, �, C, ld
)SYRKC
all
blas
syrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ld
)C op C �AAT + �CF77 op CT �AAT + �CTF77
all CSYRK('L', 'T', n, k, �, A, lda, B, ldb, �, C, ld
)C
all
blas
syrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, �, C, ld
)C op C �ATA+ �CF77 op CT �ATA+ �CTF77
all CSYRK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)In reading the above des
riptions, it is important to remember a few things. First, the symmetri
matrix is C, and thus we
hange UPLO to a

ommodate the di�ering storage of C. TRANSPOSE isthen varied to handle the storage e�e
ts on A.HERKC
all
blas
herk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ld
)C op C �AAH + �CF77 op CT �AAT + �CTF77
all CHERK('L', 'C', n, k, �, A, lda, B, ldb, �, C, ld
)C
all
blas
herk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, �, C, ld
)C op C �AHA+ �CF77 op CT �ATA+ �CTF77
all CHERK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)SYR2KC
all
blas
syr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ABT + �BAT + �CF77 op CT �BAT + �ABT + �CT = �ABT + �BAT + �CTF77
all CSYR2K('L', 'T', n, k, �, A, lda, B, ldb, �, C, ld
)C
all
blas
syr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ATB + �BTA+ �CF77 op CT �BTA+ �ATB + �CT = �ATB + �BTA+ �CTF77
all CSYR2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 193Note that we on
e again wind up with an operation that looks the same from C and Fortran77, saving that the C operations wishes to form CT , instead of C. So on
e again we
ip the settingof UPLO to handle the di�eren
e in the storage of C. We then
ip the setting of TRANS to handlethe storage e�e
ts for A and B.HER2KC
all
blas
her2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �ABH + �BAH + �CF77 op CT �BAT + �ABT + �CT = �ABT + �BAT + �CTF77
all CHER2K('L', 'C', n, k, �, A, lda, B, ldb, �, C, ld
)C
all
blas
her2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C �AHB + �BHA+ �CF77 op CT �BTA+ �ATB + �CT = �ATB + �BTA+ �CTF77
all CHER2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)TRMM/TRSMBe
ause of their identi
al use of the SIDE, UPLO, and TRANSA parameters, TRMM and TRSM sharethe same general analysis. Remember that A is a triangular matrix, and thus when we handle itsstorage by
ipping UPLO, we impli
itly
hange its TRANS setting as well. With this in mind, wehave:C
all
blas
trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, �, A, lda, B, ldb)C op B �ABF77 op BT �BTATF77
all CTRMM('R', 'L', 'N', diag, n, m, �, A, lda, B, ldb)C
all
blas
trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, �, A, lda, B, ldb)C op B �ATBF77 op BT �BTAF77
all CTRMM('R', 'L', 'T', diag, n, m, �, A, lda, B, ldb)C
all
blas
trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, �, A, lda, B, ldb)C op B �AHBF77 op BT �BTAF77
all CTRMM('R', 'L', 'C', diag, n, m, �, A, lda, B, ldb)Banded routinesThe above te
hniques
an be used for the banded routines only if a C (row-major) banded arrayhas some sort of meaning when expanded as a Fortran banded array. It turns out that when thisis done, you get the transpose of the C array, just as in the dense
ase.In Fortran 77, the banded array is an array whose rows
orrespond to the diagonals of thematrix, and whose
olumns
ontain the sele
ted portion of the matrix
olumn. To rephrase this,the diagonals of the matrix are stored in strided storage, and the relevant pie
es of the
olumns ofthe matrix are stored in
ontiguous memory. This makes sense: in a
olumn-based algorithm, youwill want your
olumns to be
ontiguous for eÆ
ien
y reasons.In order to ensure our
olumns are
ontiguous, we will stru
ture the banded array as shownbelow. Noti
e that the �rst KU rows of the array store the superdiagonals, appropriately spa
ed

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

194 ANNEX B. LEGACY BLASto line up
orre
tly in the
olumn dire
tion with the main diagonal. The last KL rows
ontain thesubdiagonals.------ Super diagonal KU----------- Super diagonal 2------------ Super diagonal 1------------- main diagonal (D)------------ Sub diagonal 1----------- Sub diagonal 2------ Sub diagonal KLIf we have a row-major storage, and thus a row-oriented algorithm, we will similarly want ourrows to be
ontiguous in order to ensure eÆ
ien
y. The storage s
heme that is thus di
tated isshown below. Noti
e that the �rst KL
olumns store the subdiagonals, appropriately padded toline up with the main diagonal along rows.KL D KU| | | || | | | || | | | | || | | | | || | | | || | | |Now, let us
ontrast these two storage s
hemes. Both store the diagonals of the matrix alongthe non-
ontiguous dimension of the matrix. The
olumn-major banded array stores the matrix
olumns along the
ontiguous dimension, whereas the row-major banded array stores the matrixrows along the
ontiguous storage.This gives us our �rst hint as to what to do: rows stored where
olumns should be, indi
ated,in the dense routines, that we needed to set a transpose parameter. We will see that we
an dothis for the banded routines as well.We
an further note that in the
olumn-major banded array, the �rst part of the non-
ontiguousdimension (i.e. the �rst rows) store superdiagonals, whereas the �rst part of the non-
ontiguousdimension of row-major arrays (i.e., the �rst
olumns) store the subdiagonals.We now note that when you transpose a matrix, the superdiagonals of the matrix be
ome thesubdiagonals of the matrix transpose (and vi
e versa).Along the
ontiguous dimension, we note that we skip KU elements before
oming to our �rstentry in a
olumn-major banded array. The same happens in our row-major banded array, ex
eptthat the skipping fa
tor is KL.All this leads to the idea that when we have a row-major banded array, we
an
onsider it asa transpose of the Fortran 77
olumn-major banded array, where we will swap not only m and n,but also KU and KL. An example should help demonstrate this prin
iple. Let us say we have thematrix A = " 1 3 5 72 4 6 8 #If we express this entire array in banded form (a fairly dumb thing to do, but good forexample purposes), we get KU = 3, KL = 1. In row-major banded storage this be
omes:Cb = " X 1 3 5 72 4 6 8 X #

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

B.2. C INTERFACE TO THE LEGACY BLAS 195So, we believe this should be the transpose if interpreted as a Fortran 77 banded array. Thematrix transpose, and its Fortran 77 banded storage is shown below:AT = 26664 1 23 45 67 8 37775) Fb = 2666664 X 21 43 65 87 X
3777775Now we simply note that sin
e Cb is row major, and Fb is
olumn-major, they are a
tually thesame array in memory.With the idea that row-major banded matri
es produ
e the transpose of the matrix wheninterpreted as
olumn-major banded matri
es, we
an use the same analysis for the banded BLASas we used for the dense BLAS, noting that we must also always swap KU and KL.Pa
ked routinesPa
ked routines are mu
h simpler than banded. Here we have a triangular, symmetri
 or Hermitianmatrix whi
h is pa
ked so that only the relevant triangle is stored. Thus if we have an upper tri-angular matrix stored in
olumn-major pa
ked storage, the �rst element holds the relevant portionof the �rst
olumn of the matrix, the next two elements hold the relevant portion of the se
ond
olumn, et
.With an upper triangular matrix stored in row-major pa
ked storage, the �rst N elements holdthe �rst row of the matrix, the next N � 1 elements hold the next row, et
.Thus we see in the Hermitian and symmetri

ases, to get a row-major pa
ked array
orre
tlyinterpreted by Fortran 77, we will simply swit
h the setting of UPLO. This will mean that the rowsof the matrix will be read in as the
olumns, but this is not a problem, as we have seen before.In the symmetri

ase, sin
e A = AT the
olumn and rows are the same, so there is obviously noproblem. In the Hermitian
ase, we must be sure that the imaginary
omponent of the diagonal isnot used, and it assumed to be zero. However, the diagonal element in a row when our matrix isupper will
orrespond to the diagonal element in a
olumn when our matrix is
alled lower, so thisis handled as well.In the triangular
ases, we will need to
hange both UPLO and TRANS, just as in the denseroutines.With these ideas in mind, the analysis for the dense routines may be used un
hanged for pa
ked.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

