
Annex BLega
y BLASB.1 Introdu
tionThis 
hapter addresses additional language bindings for the original Level 1, 2, and 3 BLAS. TheLevel 1, 2, and 3 BLAS will hereafter be referred to as the Lega
y BLAS.B.2 C interfa
e to the Lega
y BLASThis se
tion gives a detailed dis
ussion of the proposed C interfa
e to the lega
y BLAS. Everymention of \BLAS" in this 
hapter should be taken to mean the lega
y BLAS. Ea
h interfa
ede
ision is dis
ussed in its own se
tion. Ea
h se
tion also 
ontains a Considered methods subse
tion,where other solutions to that parti
ular problem are dis
ussed, along with the reasons why thoseoptions were not 
hosen. These Considered methods subse
tions are indented and itali
ized in orderto distinguish them from the rest of the text.It is largely agreed among the group (and unanimous among the vendors) that user demandfor a C interfa
e to the BLAS is insuÆ
ient to motivate vendors to support a 
ompletely separatestandard. This proposal therefore 
on�nes itself to an interfa
e whi
h 
an be readily supported ontop of the already existing Fortran 77 
allable BLAS (i.e., the lega
y BLAS).The interfa
e is expressed in terms of ANSI/ISO C. Very few platforms fail to provide ANSI/ISOC 
ompilers at this time, and for those platforms, free ANSI/ISO C 
ompilers are almost alwaysavailable (eg., g

).B.2.1 Naming s
hemeThe naming s
heme 
onsists of taking the Fortran 77 routine name, making it lower 
ase, andadding the pre�x 
blas . Therefore, the routine DGEMM be
omes 
blas dgemm.Considered methodsVarious other naming s
hemes have been proposed, su
h as adding C or 
 to thename. Most of these s
hemes a

omplish the requirement of separating the Fortran 77and C name spa
es. It was argued, however, that the addition of the blas pre�x uni�esthe naming s
heme in a logi
al and useful way (making it easy to sear
h for BLAS usein a 
ode, for instan
e), while not pla
ing too great a burden on the typist. The letter 
is used to distinguish this language interfa
e from possible future interfa
es.
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B.2. C INTERFACE TO THE LEGACY BLAS 181B.2.2 Indi
es and I AMAXThe Fortran 77 BLAS return indi
es in the range 1 � I � N (where N is the number of entriesin the dimension in question, and I is the index), in a

ordan
e with Fortran 77 array indexing
onventions. This allows fun
tions returning indi
es to be dire
tly used to index standard arrays.The C interfa
e therefore returns indi
es in the range 0 � I < N for the same reason.The only BLAS routine whi
h returns an index is the fun
tion I AMAX. This fun
tion is de
laredto be of type CBLAS INDEX, whi
h is guaranteed to be an integer type (i.e., no 
ast is required whenassigning to any integer type). CBLAS INDEX will usually 
orrespond to size t to ensure any array
an be indexed, but implementors might 
hoose the integer type whi
h mat
hes their Fortran 77INTEGER, for instan
e. It is de�ned that zero is returned as the index for a zero length ve
tor (eg.,For N = 0, I AMAX will always return zero).B.2.3 Chara
ter argumentsAll arguments whi
h were 
hara
ters in the Fortran 77 interfa
e are handled by enumerated typesin the C interfa
e. This allows for tighter error 
he
king, and provides less opportunity for usererror. The 
hara
ter arguments present in the Fortran 77 interfa
e are: SIDE, UPLO, TRANSPOSE,and DIAG. This interfa
e adds another su
h argument to all routines involving two dimensionalarrays, ORDER. The standard di
tates the following enumerated types:enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};Considered methodsThe other two most 
ommonly suggested methods were a

epting these arguments aseither 
har * or 
har. It was noted that both of these options require twi
e as many
omparisons as normally required to bran
h (so that the 
hara
ter may be either upperor lower 
ase). Both methods also su�ered from ambiguity (what does it mean to haveDIAG='H', for instan
e). If 
har was 
hosen, the words 
ould not be written out as they
an for the Fortran 77 interfa
e (you 
ouldn't write "NoTranspose"). If 
har * wereused, some 
ompilers might fail to optimize string 
onstant use, 
ausing unne
essarymemory usage.The main advantage of enumerated data types, however, is that mu
h of the error
he
king 
an be done at 
ompile time, rather than at runtime (i.e., if the user fails topass one of the valid options, the 
ompiler 
an issue the error).There was mu
h dis
ussion as to whether the integer values should be spe
i�ed, orwhether only the enumerated names should be so spe
i�ed. The group 
ould �nd nosubstansive way in whi
h spe
ifying the integer values would restri
t an implementor,and spe
ifying the integer values was seen as an aid to inter-language 
alls.B.2.4 Handling of 
omplex data typesAll 
omplex arguments are a

epted as void *. A 
omplex element 
onsists of two 
onse
utivememory lo
ations of the underlying data type (i.e., float or double), where the �rst lo
ation
ontains the real 
omponent, and the se
ond 
ontains the imaginary part of the number.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



182 ANNEX B. LEGACY BLASIn pra
ti
e, programmers' methods of handling 
omplex types in C vary. Some use various datastru
tures (some examples are dis
ussed below). Others a

ept 
omplex numbers as arrays of theunderlying type.Complex numbers are a

epted as void pointers so that widespread type 
asting will not berequired to avoid warning or errors during 
ompilation of 
omplex 
ode.An ANSI/ISO 
ommittee is presently working on an extension to ANSI/ISO C whi
h de�nes
omplex data types. The de�nition of a 
omplex element is the same as given above, and so thehandling of 
omplex types by this interfa
e will not need to be 
hanged when ANSI/ISO C standardis extended.Considered methodsProbably the most strongly advo
ated alternative was de�ning 
omplex numbers viaa stru
ture su
h asstru
t NON PORTABLE COMPLEX ffloat r; float i;g; The main problem with thissolution is the la
k of portability. By the ANSI/ISO C standard, elements in a stru
tureare not guaranteed to be 
ontiguous. With the above stru
ture, padding between elementshas been experimentally observed (on the CRAY T3D), so this problem is not purelytheoreti
al.To get around padding problems within the stru
ture, a stru
ture su
h asstru
t NON PORTABLE COMPLEX ffloat v[2℄;g; has been suggested. With this stru
-ture there will obviously be no padding between the real and imaginary parts. However,there still exists the possibility of padding between elements within an array. More im-portantly, this stru
ture does not lend itself nearly as well as the �rst to 
ode 
larity.A �nal proposal is to de�ne a stru
ture whi
h may be addressed the same as theone above (i.e., ptr->r, ptr->i), but whose a
tual de�nition is platform dependent.Then, hopefully, various vendors will either use the above stru
ture and ensure viatheir 
ompilers its 
ontiguousness, or they will 
reate a di�erent stru
ture whi
h 
an bea

essed in the same way.This requires vendors to support something whi
h is not in the ANSI C standard,and so there is no way to ensure this would take pla
e. More to the point, use of su
h astru
ture turns out to not o�er mu
h in the way of real advantage, as dis
ussed in thefollowing se
tion.All of these approa
hes require the programmer to either use the spe
i�ed data typethroughout the 
ode whi
h will 
all the BLAS, or to perform type 
asting on ea
h BLAS
all. When 
omplex numbers are a

epted as void pointers, no type 
asting or data typeis di
tated, with the only restri
tion being that a 
omplex number have the de�nitiongiven above.B.2.5 Return values of 
omplex fun
tionsBLAS routines whi
h return 
omplex values in Fortran 77 are instead re
ast as subroutines in theC interfa
e, with the return value being an output parameter added to the end of the argumentlist. This allows the output parameter to be a

epted as void pointers, as dis
ussed above.Further, the name is suÆxed by sub. There are two main reasons for this name 
hange.First, the 
hange from a fun
tion to a subroutine is a signi�
ant 
hange, and thus the name shouldre
e
t this. More importantly, the \traditional" name spa
e is spe
i�
ally reserved for use when theforth
oming ANSI/ISO C extension is �nalized. When this is done, this C interfa
e will be extended
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B.2. C INTERFACE TO THE LEGACY BLAS 183to in
lude fun
tions using the \traditional" names whi
h utilize the new ANSI/ISO 
omplex typeto return the values.Considered methodsThis is the area where use of a stru
ture is most desired. Again, the most 
ommonsuggestion is a stru
ture su
h as stru
t NON_PORTABLE_COMPLEX {float r; float i;};.If one is willing to use this stru
ture throughout one's 
ode, then this provides anatural and 
onvenient me
hanism. If, however, the programmer has utilized a di�erentstru
ture for 
omplex, this ease of use breaks down. Then, something like the following
ode fragment is required:NON_PORTABLE_COMPLEX 
tmp;float 
dot[2℄;
tmp = 
blas_
dot
(n, x, 1, y, 1);
dot[0℄ = 
tmp.r;
dot[1℄ = 
tmp.i;whi
h is 
ertainly mu
h less 
onvenient than: 
blas_
dot
_sub(n, x, 1, y, 1, 
dot).It should also be noted that the primary reason for having a fun
tion instead of asubroutine is already invalidated by C's la
k of a standard 
omplex type. Fun
tionsare most useful when the result may be used dire
tly as part of an in-line 
omputation.However, sin
e ANSI/ISO C la
ks support for 
omplex arithmeti
 primitives or operatoroverloading, 
omplex fun
tions 
annot be standardly used in this way. Sin
e the fun
tion
annot be used as a part of a larger expression, nothing is lost by re
asting it as asubroutine; indeed a slight performan
e win may be obtained.B.2.6 Array argumentsArrays are 
onstrained to being 
ontiguous in memory. They are a

epted as pointers, not as arraysof pointers.All BLAS routines whi
h take one or more two dimensional arrays as arguments re
eive oneextra parameter as their �rst argument. This argument is of the enumerated typeenum CBLAS ORDER fCblasRowMajor=101, CblasColMajor=102g;.If this parameter is set to CblasRowMajor, it is assumed that elements within a row of the array(s)are 
ontiguous in memory, while elements within array 
olumns are separated by a 
onstant stridegiven in the stride parameter (this parameter 
orresponds to the leading dimension [e.g. LDA℄ inthe Fortran 77 interfa
e).If the order is given as CblasColMajor, elements within array 
olumns are assumed to be
ontiguous, with elements within array rows separated by stride memory elements.Note that there is only one CBLAS ORDER parameter to a given routine: all array operands arerequired to use the same ordering.Considered methodsThis solution 
omes after mu
h dis
ussion. C users appear to split roughly into two
amps. Those people who have a history of mixing C and Fortran 77 (in parti
ularmaking use of the Fortran 77 BLAS from C), tend to use 
olumn-major arrays in orderto allow ease of inter-language operations. Be
ause of the 
exibility of pointers, this is
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184 ANNEX B. LEGACY BLASnot appre
iably harder than using row-major arrays, even though C \natively" possessesrow-major arrays.The se
ond 
amp of C users are not interested in overt C/Fortran 77 interoperability,and wish to have arrays whi
h are row-major, in a

ordan
e with standard C 
onven-tions. The idea that they must re
ast their row-oriented algorithms to 
olumn-majoralgorithms is una

eptable; many in this 
amp would probably not utilize any BLASwhi
h enfor
ed a 
olumn-major 
onstraint.Be
ause both 
amps are fairly widely represented within the target audien
e, it isimpossible to 
hoose one solution to the ex
lusion of the other.Column-major array storage 
an obviously be supported dire
tly on top of the lega
yFortran 77 BLAS. Re
ent work, parti
ularly 
ode provided by D.P. Manley of DEC, hasshown that row-major array storage may also be supported in this way with little 
ost.Appendix B.2.12 dis
usses this issue in detail. To preview it here, we 
an say the level1 and 3 BLAS require no extra operations or storage to support row-major operationson top of the lega
y BLAS. Level 2 real routines also require no extra operations orstorage. Some 
omplex level 2 routines involving the 
onjugate transpose will requireextra storage and operations in order to form expli
it 
onjugates. However, this willalways involve ve
tors, not the matrix. In the worst 
ase, we will need n extra storage,and 3n sign 
hanges.One proposal was to a

ept arrays as arrays of pointers, instead of as a single pointer.The problems with this approa
h are manifold. First, the existing Fortran 77 BLAS
ould not be used, sin
e they demand 
ontiguous (though strided) storage. Se
ond, thisapproa
h requires users of standard C 2D arrays or 1D arrays to allo
ate and assign theappropriate pointer array.Beyond this, many of the ve
tors used in level 1 and level 2 BLAS 
ome from rowsor 
olumns of two dimensional arrays. Elements within 
olumns of row-major arraysare not uniformly strided, whi
h means that a n-element 
olumn ve
tor would need npointers to represent it. This then leads to ve
tors being a

epted as arrays of pointersas well.Now, assuming both our one and two dimensional arrays are a

epted as arrays ofpointers, we have a problem when we wish to perform sub-array a

ess. If we wish topass an m�n subse
tion of a this array of pointers, starting at row i and 
olumn j, wemust allo
ate m pointers, and assign them in a se
tion of 
ode su
h as:float **A, **subA;subA = mallo
(m*sizeof(float*));for (k=0; k != m; k++) subA[k℄ = A[i+k℄ + j;
blas_rout(... subA ...);The same operation must be done if we wish to use a row or 
olumn as a ve
tor.This is not only an in
onvenien
e, but 
an add up to a non-negligible performan
e lossas well.A �x for these problems is that one and two dimensional arrays be passed as arraysof pointers, and then indi
es are passed in to indi
ate the sub-portion to a

ess. Thusyou have a 
all that looks like: 
blas_rout(... A, i, j, ...);. This solution stillrequires some additional tweaks to allow using two dimensional array rows and 
olumnsas ve
tors. Users presently using C 2D arrays or 1D arrays would have to mallo
 the
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B.2. C INTERFACE TO THE LEGACY BLAS 185array of pointers as shown in the pre
eding example in order to use this kind of interfa
e.At any rate, a library a

epting pointers to pointers 
annot be supported on top of theFortran 77 BLAS, while one supporting simple pointers 
an.If the programmer is utilizing the pointer to pointer style of array indexing, it is stillpossible to use this library providing that the user ensures that the operand matrix is
ontiguous, and that the rows are 
onstantly strided. If this is the 
ase, the user maypass the operand matrix to the library in pre
i
ely the same way as with a 2D C array:
blas_rout(... &A[i℄[j℄ ...);.Example 1: making a library 
all with a C 2D array:double A[50℄[25℄; /* standard C 2D array */
blas_rout(CblasRowMajor, ... &A[i℄[j℄, 25, ...);Example 2: Legal use of pointer to pointer style programming and theCBLASdouble **A, *p;A = mallo
(M);p = mallo
(M*N*sizeof(double));for (i=0; i < M; i++) A[i℄ = &p[i*N℄;
blas_rout(CblasRowMajor, ... &A[i℄[j℄, N, ...);Example 3: Illegal use of pointer to pointer style programming and theCBLASdouble **A, *p;A = mallo
(M);p = mallo
(M*N*sizeof(double));for (i=0; i < M; i++) A[i℄ = mallo
(N*sizeof(double));
blas_rout(CblasRowMajor, ... &A[i℄[j℄, N, ...);Note that Example 3 is illegal be
ause the rows of A have no guaranteed stride.B.2.7 Aliasing of argumentsUnless spe
i�ed otherwise, only input-only arguments (spe
i�ed with the 
onst quali�er), may belegally aliased on a 
all to the C interfa
e to the BLAS.Considered methodsThe ANSI C standard allows for the aliasing of output arguments. However, allowing this often
arries a substantial performan
e penalty. This, along with the fa
t that Fortran 77 (whi
h wehope to 
all for optimized libraries) does not allow aliasing of output arguments, led us to makethis restri
tion.
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186 ANNEX B. LEGACY BLASB.2.8 C interfa
e in
lude �leThe C interfa
e to the BLAS will have a standard in
lude �le, 
alled 
blas.h, whi
h minimally
ontains the de�nition of the CBLAS types and ANSI/ISO C prototypes for all BLAS routines.It is not an error to in
lude this �le multiple times. Refer to se
tion B.2.11 for an example of aminimal 
blas.h.ADVICE TO THE IMPLEMENTOR:Note that the vendor is not 
onstrained to using pre
isely this in
lude �le; only the enumerated typede�nitions are fully spe
i�ed. The implementor is free to make any other 
hanges whi
h are notapparent to the user. For instan
e, all matrix dimensions might be a

epted as size t instead ofint, or the implementor might 
hoose to make some routines inline.B.2.9 Error 
he
kingThe C interfa
e to the lega
y BLAS must supply error 
he
king 
orresponding to that provided bythe referen
e Fortran 77 BLAS implementation.B.2.10 Rules for obtaining the C interfa
e from the Fortran 77� The Fortran 77 routine name is 
hanged to lower 
ase, and pre�xed by 
blas .� All routines whi
h a

ept two dimensional arrays (i.e., level 2 and 3), a
quire a new parameterof type CBLAS ORDER as their �rst argument, whi
h determines if the two dimensional arraysare row or 
olumn major.� Chara
ter arguments are repla
ed by the appropriate enumerated type, as shown in Se
-tion B.2.3.� Input arguments are de
lared with the 
onst modi�er.� Non-
omplex s
alar input arguments are passed by value. This allows the user to put in
onstants when desired (eg., passing 10 on the 
ommand line for N).� Complex s
alar input arguments are passed as void pointers, sin
e they do not exist as aprede�ned data type in ANSI/ISO C.� Array arguments are passed by address.� Output s
alar arguments are passed by address.� Complex fun
tions be
ome subroutines whi
h return the result via a void pointer, added asthe last parameter. The name is suÆxed with sub.B.2.11 
blas.h in
lude �leThe 
blas.h in
lude �le 
an be found on the BLAS Te
hni
al Forum webpage:http://www.netlib.org/blas/blast-forum/
blas.h
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B.2. C INTERFACE TO THE LEGACY BLAS 187B.2.12 Using Fortran 77 BLAS to support row-major BLAS operationsThis se
tion is not part of the standard per se. Rather, it exists as an advi
e to the implementoron how row-major BLAS operations may be implemented using 
olumn-major BLAS. This allowsvendors to leverage years of Fortran 77 BLAS developement in produ
ing the C BLAS.Before this issue is examined in detail, a few general observations on array storage are helpful.We must distinguish between the matrix and the array whi
h is used to store the matrix. Thematrix, and its rows and 
olumns, have mathemati
al meaning. The array is simply the method ofstoring the matrix, and its rows and 
olumns are signi�
ant only for memory addressing.Thus we see we 
an store the 
olumns of a matrix in the rows of an array, for instan
e. Whenthis o

urs in the BLAS, the matrix is said to be stored in transposed form.A row-major array stores elements along a row in 
ontiguous storage, and separates the 
olumnelements by some 
onstant stride (often the a
tual length of a row). Column-major arrays have
ontiguous 
olumns, and strided rows. The importan
e of this is to note that a row-major arraystoring a matrix in the natural way, is a transposed 
olumn-major array (i.e., it 
an be thought ofas a 
olumn-major array where the rows of the matrix are stored in the 
olumns of the array).Similarly, an upper triangular row-major array 
orresponds to a transposed lower triangular
olumn-major array (the same is true in reverse [i.e., lower-to-upper℄, obviously). To see this,simply think of what a upper triangular matrix stored in a row-major array looks like. The �rst nentries 
ontain the �rst matrix row, followed by a non-negative gap, followed by the se
ond matrixrow.If this same array is viewed as 
olumn-major, the �rst n entries are a 
olumn, instead of a row,so that the 
olumns of the array store the rows of the matrix (i.e., it is transposed). This meansthat if we wish to use the Fortran 77 (
olumn-major) BLAS with triangular matri
es 
oming fromC (possibly row-major), we will be reversing the setting of UPLO, while simultaneously reversingthe setting of TRANS (this gets slightly more 
ompli
ated when the 
onjugate transpose is involved,as we will see).Finally, note that if a matrix is symmetri
 or Hermitian, its rows are the same as its 
olumns,so we may merely swit
h UPLO, without bothering with TRANS.In the BLAS, there are two separate 
ases of importan
e. one dimensional arrays (storage forve
tors) have the same meaning in both C and Fortran 77, so if we are solving a linear algebraproblem who's answer is a ve
tor, we will need to solve the same problem for both languages.However, if the answer is a matrix, in terms of 
alling routines whi
h use 
olumn-major storagefrom one using row-major storage, we will want to solve the transpose of the problem.To get an idea of what this means, 
onsider a 
ontrived example. Say we have routines forsimple matrix-matrix and matrix-ve
tor multiply. The ve
tor operation is y  A � x, and thematrix operation is C  A � B. Now say we are implementing these as 
alls from row-majorarray storage to 
olumn-major storage. Sin
e the matrix-ve
tor multiply's answer is a ve
tor, theproblem we are solving is remains the same, but we must remember that our C array A is a Fortran77 AT . On the other hand, the matrix-matrix multiply has a matrix for a result, so when thedi�ering array storage is taken into a

ount, the problem we want to solve is CT  BT �AT .This last example demonstrates another general result. Some level 3 BLAS 
ontain a SIDEparameter, determining whi
h side a matrix is applied on. In general, if we are solving the transposeof this operation, the side parameter will be reversed.With these general prin
iples, it is possible to show that all that row-major level 3 BLAS 
anbe expressed in terms of 
olumn-major BLAS without any extra array storage or extra operations.In the level 2 BLAS, no extra storage or array a

esses are required for the real routines. Complexroutines involving the 
onjugate transpose, however, may require a n-element temporary, and up
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188 ANNEX B. LEGACY BLASto 3n more operations (vendors may avoid all extra workspa
e and operations by overloading theTRANS option for the level 2 BLAS: letting it also allow 
onjugation without doing the transpose).The level 1 BLAS, whi
h deal ex
lusively with ve
tors, are una�e
ted by this storage issue.With these ideas in mind, we will now show how to support a row-major BLAS on top of a
olumn major BLAS. This information will be presented in tabular form. For brevity, row-majorstorage will be referred to as 
oming from C (even though 
olumn-major arrays 
an also 
ome fromC), while 
olumn-major storage will be referred to as F77.Ea
h table will show a BLAS invo
ation 
oming from C, the operation that the BLAS shouldperform, the operation required on
e F77 storage is taken into a

ount (if this 
hanges), and the 
allto the appropriate F77 BLAS. Not every possible 
ombination of parameters is shown, sin
e manyare simply re
e
tions of another (i.e., when we are applying the Upper, NoTranspose be
omesLower, Transpose rule, we will show it for only the upper 
ase. In order to make the notationmore 
on
ise, let us de�ne x to be 
onj(x).Level 2 BLASGEMVC 
all 
blas 
gemv(CblasRowMajor, CblasNoTrans, m, n, �, A, lda, x, in
x, �, y, in
y)op y  �Ax+ �yF77 
all CGEMV('T', n, m, �, A, lda, x, in
x, �, y, in
y)C 
all 
blas 
gemv(CblasRowMajor, CblasTrans, m, n, �, A, lda, x, in
x, �, y, in
y)op y  �ATx+ �yF77 
all CGEMV('N', n, m, �, A, lda, x, in
x, �, y, in
y)C 
all 
blas 
gemv(CblasRowMajor, CblasConjTrans, m, n, �, A, lda, x, in
x, �, y, in
y)op y  �AHx+ �y ) (y  �ATx+ �y)F77 
all CGEMV('N', n, m, �, A, lda, x, 1, �, y, in
y)Note that we swit
h the value of transpose to handle the row/
olumn major ordering di�eren
e.In the last 
ase, we will require n elements of workspa
e so that we may store the 
onjugated ve
torx. Then, we set y = y, and make the 
all. This gives us the 
onjugate of the answer, so we on
eagain set y = y. Therefore, we see that to support the 
onjugate transpose, we will need to allo
atean n-element ve
tor, and perform 2m+ n extra operations.SYMVSYMV requires no extra workspa
e or operations.C 
all 
blas 
symv(CblasRowMajor, CblasUpper, n, �, A, lda, x, in
x, �, y, in
y)op y  �Ax+ �y ) y  �ATx+ �yF77 
all CSYMV('L', n, �, A, lda, x, in
x, �, y, in
y)HEMVHEMV routine requires 3n 
onjugations, and n extra storage.C 
all 
blas 
hemv(CblasRowMajor, CblasUpper, n, �, A, lda, x, in
x, �, y, in
y)op y  �Ax+ �y ) y  �AHx+ �y ) (y  �ATx+ �y)F77 
all CHEMV('L', n, �, A, lda, x, in
x, �, y, in
y)
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B.2. C INTERFACE TO THE LEGACY BLAS 189TRMV/TRSVC 
all 
blas 
trmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, lda, x, in
x)op x AxF77 
all CTRMV('L', 'T', diag, n, A, lda, x, in
x)C 
all 
blas 
trmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, in
x)op x ATxF77 
all CTRMV('L', 'N', diag, n, A, lda, x, in
x)C 
all 
blas 
trmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, in
x)op x AHx) (x = ATx)F77 
all CTRMV('L', 'N', diag, n, A, lda, x, in
x)Again, we see that we will need some extra operations when we are handling the 
onjugatetranspose. We 
onjugate x before the 
all, giving us the 
onjugate of the answer we seek. We then
onjugate this again to return the 
orre
t answer. This routine therefore needs 2n extra operationsfor the 
omplex 
onjugate 
ase.The 
alls with the C array being Lower are merely the re
e
tion of these 
alls, and thus arenot shown. The analysis for TRMV is the same, sin
e it involves the same prin
iple of what atranspose of a triangular matrix is.GER/GERUThis is our �rst routine that has a matrix as the solution. Re
alling that this means we solve thetranspose of the original problem, we get:C 
all 
blas 
geru(CblasRowMajor, m, n, �, x, in
x, y, in
y, A, lda)C op A �xyT +AF77 op AT  �yxT +ATF77 
all CGERU(n, m, �, y, in
y, x, in
x, A, lda)No extra storage or operations are required.GERCC 
all 
blas 
ger
(CblasRowMajor, m, n, �, x, in
x, y, in
y, A, lda)C op A �xyH +AF77 op AT  �(xyH)T +AT = �yxT +ATF77 
all CGERU(n, m, �, y, in
y, x, in
x, A, lda)Note that we need to allo
ate n-element workspa
e to hold the 
onjugated y, and we 
all GERU,not GERC.HERC 
all 
blas 
her(CblasRowMajor, CblasUpper, n, �, x, in
x, A, lda)C op A �xxH +AF77 op AT  �xxT +ATF77 
all CHER('L', n, �, x, 1, A, lda)Again, we have an n-element workspa
e and n extra operations.
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190 ANNEX B. LEGACY BLASHER2C 
all 
blas 
her2(CblasRowMajor, CblasUpper, n, �, x, in
x, y, in
y, A, lda)C op A �xyH + y(�x)H +AF77 op AT  �yxT + �xyT +AT = �y(x)H + x(�y)H +ATF77 
all CHER2('L', n, �, y, 1, x, 1, A, lda)So we need 2n extra workspa
e and operations to form the 
onjugates of x and y.SYRC 
all 
blas ssyr(CblasRowMajor, CblasUpper, n, �, x, in
x, A, lda)C op A �xxT +AF77 op AT  �xxT +ATF77 
all SSYR('L', n, �, x, in
x, A, lda)No extra storage or operations required.SYR2C 
all 
blas ssyr2(CblasRowMajor, CblasUpper, n, �, x, in
x, y, in
y, A, lda)C op A �xyT + �yxT +AF77 op AT  �yxT + �xyT +ATF77 
all SSYR2('L', n, �, y, in
y, x, in
x, A, lda)No extra storage or operations required.
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B.2. C INTERFACE TO THE LEGACY BLAS 191Level 3 BLASGEMMC 
all 
blas 
gemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �AB + �CF77 op CT  �BTAT + �CTF77 
all CGEMM('N', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ABT + �CF77 op CT  �BAT + �CTF77 
all CGEMM('T', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ABH + �CF77 op CT  �BAT + �CTF77 
all CGEMM('C', 'N', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ATB + �CF77 op CT  �BTA+ �CTF77 
all CGEMM('N', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ATBT + �CF77 op CT  �BA+ �CTF77 
all CGEMM('T', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ATBH + �CF77 op CT  �BA+ �CTF77 
all CGEMM('C', 'T', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �AHB + �CF77 op CT  �BTA+ �CTF77 
all CGEMM('N', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �AHBT + �CF77 op CT  �BA+ �CTF77 
all CGEMM('T', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld
)C 
all 
blas 
gemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �AHBH + �CF77 op CT  �BA+ �CTF77 
all CGEMM('C', 'C', n, m, k, �, B, ldb, A, lda, �, C, ld
)
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all 
blas 
hemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ld
)C op C  �AB + �CF77 op CT  �BTAT + �CTF77 
all CHEMM('R', 'L', n, m, �, A, lda, B, ldb, �, C, ld
)C 
all 
blas 
hemm(CblasRowMajor, CblasRight, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ld
)C op C  �BA + �CF77 op CT  �ATBT + �CTF77 
all CHEMM('L', 'L', n, m, �, A, lda, B, ldb, �, C, ld
)SYRKC 
all 
blas 
syrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ld
)C op C  �AAT + �CF77 op CT  �AAT + �CTF77 
all CSYRK('L', 'T', n, k, �, A, lda, B, ldb, �, C, ld
)C 
all 
blas 
syrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, �, C, ld
)C op C  �ATA+ �CF77 op CT  �ATA+ �CTF77 
all CSYRK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)In reading the above des
riptions, it is important to remember a few things. First, the symmetri
matrix is C, and thus we 
hange UPLO to a

ommodate the di�ering storage of C. TRANSPOSE isthen varied to handle the storage e�e
ts on A.HERKC 
all 
blas 
herk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ld
)C op C  �AAH + �CF77 op CT  �AAT + �CTF77 
all CHERK('L', 'C', n, k, �, A, lda, B, ldb, �, C, ld
)C 
all 
blas 
herk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, �, C, ld
)C op C  �AHA+ �CF77 op CT  �ATA+ �CTF77 
all CHERK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)SYR2KC 
all 
blas 
syr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ABT + �BAT + �CF77 op CT  �BAT + �ABT + �CT = �ABT + �BAT + �CTF77 
all CSYR2K('L', 'T', n, k, �, A, lda, B, ldb, �, C, ld
)C 
all 
blas 
syr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ATB + �BTA+ �CF77 op CT  �BTA+ �ATB + �CT = �ATB + �BTA+ �CTF77 
all CSYR2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)
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B.2. C INTERFACE TO THE LEGACY BLAS 193Note that we on
e again wind up with an operation that looks the same from C and Fortran77, saving that the C operations wishes to form CT , instead of C. So on
e again we 
ip the settingof UPLO to handle the di�eren
e in the storage of C. We then 
ip the setting of TRANS to handlethe storage e�e
ts for A and B.HER2KC 
all 
blas 
her2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �ABH + �BAH + �CF77 op CT  �BAT + �ABT + �CT = �ABT + �BAT + �CTF77 
all CHER2K('L', 'C', n, k, �, A, lda, B, ldb, �, C, ld
)C 
all 
blas 
her2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, B, ldb, �, C, ld
)C op C  �AHB + �BHA+ �CF77 op CT  �BTA+ �ATB + �CT = �ATB + �BTA+ �CTF77 
all CHER2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ld
)TRMM/TRSMBe
ause of their identi
al use of the SIDE, UPLO, and TRANSA parameters, TRMM and TRSM sharethe same general analysis. Remember that A is a triangular matrix, and thus when we handle itsstorage by 
ipping UPLO, we impli
itly 
hange its TRANS setting as well. With this in mind, wehave:C 
all 
blas 
trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, �, A, lda, B, ldb)C op B  �ABF77 op BT  �BTATF77 
all CTRMM('R', 'L', 'N', diag, n, m, �, A, lda, B, ldb)C 
all 
blas 
trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, �, A, lda, B, ldb)C op B  �ATBF77 op BT  �BTAF77 
all CTRMM('R', 'L', 'T', diag, n, m, �, A, lda, B, ldb)C 
all 
blas 
trmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, �, A, lda, B, ldb)C op B  �AHBF77 op BT  �BTAF77 
all CTRMM('R', 'L', 'C', diag, n, m, �, A, lda, B, ldb)Banded routinesThe above te
hniques 
an be used for the banded routines only if a C (row-major) banded arrayhas some sort of meaning when expanded as a Fortran banded array. It turns out that when thisis done, you get the transpose of the C array, just as in the dense 
ase.In Fortran 77, the banded array is an array whose rows 
orrespond to the diagonals of thematrix, and whose 
olumns 
ontain the sele
ted portion of the matrix 
olumn. To rephrase this,the diagonals of the matrix are stored in strided storage, and the relevant pie
es of the 
olumns ofthe matrix are stored in 
ontiguous memory. This makes sense: in a 
olumn-based algorithm, youwill want your 
olumns to be 
ontiguous for eÆ
ien
y reasons.In order to ensure our 
olumns are 
ontiguous, we will stru
ture the banded array as shownbelow. Noti
e that the �rst KU rows of the array store the superdiagonals, appropriately spa
ed
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194 ANNEX B. LEGACY BLASto line up 
orre
tly in the 
olumn dire
tion with the main diagonal. The last KL rows 
ontain thesubdiagonals.------ Super diagonal KU----------- Super diagonal 2------------ Super diagonal 1------------- main diagonal (D)------------ Sub diagonal 1----------- Sub diagonal 2------ Sub diagonal KLIf we have a row-major storage, and thus a row-oriented algorithm, we will similarly want ourrows to be 
ontiguous in order to ensure eÆ
ien
y. The storage s
heme that is thus di
tated isshown below. Noti
e that the �rst KL 
olumns store the subdiagonals, appropriately padded toline up with the main diagonal along rows.KL D KU| | | || | | | || | | | | || | | | | || | | | || | | |Now, let us 
ontrast these two storage s
hemes. Both store the diagonals of the matrix alongthe non-
ontiguous dimension of the matrix. The 
olumn-major banded array stores the matrix
olumns along the 
ontiguous dimension, whereas the row-major banded array stores the matrixrows along the 
ontiguous storage.This gives us our �rst hint as to what to do: rows stored where 
olumns should be, indi
ated,in the dense routines, that we needed to set a transpose parameter. We will see that we 
an dothis for the banded routines as well.We 
an further note that in the 
olumn-major banded array, the �rst part of the non-
ontiguousdimension (i.e. the �rst rows) store superdiagonals, whereas the �rst part of the non-
ontiguousdimension of row-major arrays (i.e., the �rst 
olumns) store the subdiagonals.We now note that when you transpose a matrix, the superdiagonals of the matrix be
ome thesubdiagonals of the matrix transpose (and vi
e versa).Along the 
ontiguous dimension, we note that we skip KU elements before 
oming to our �rstentry in a 
olumn-major banded array. The same happens in our row-major banded array, ex
eptthat the skipping fa
tor is KL.All this leads to the idea that when we have a row-major banded array, we 
an 
onsider it asa transpose of the Fortran 77 
olumn-major banded array, where we will swap not only m and n,but also KU and KL. An example should help demonstrate this prin
iple. Let us say we have thematrix A = " 1 3 5 72 4 6 8 #If we express this entire array in banded form (a fairly dumb thing to do, but good forexample purposes), we get KU = 3, KL = 1. In row-major banded storage this be
omes:Cb = " X 1 3 5 72 4 6 8 X #
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B.2. C INTERFACE TO THE LEGACY BLAS 195So, we believe this should be the transpose if interpreted as a Fortran 77 banded array. Thematrix transpose, and its Fortran 77 banded storage is shown below:AT = 26664 1 23 45 67 8 37775) Fb = 2666664 X 21 43 65 87 X
3777775Now we simply note that sin
e Cb is row major, and Fb is 
olumn-major, they are a
tually thesame array in memory.With the idea that row-major banded matri
es produ
e the transpose of the matrix wheninterpreted as 
olumn-major banded matri
es, we 
an use the same analysis for the banded BLASas we used for the dense BLAS, noting that we must also always swap KU and KL.Pa
ked routinesPa
ked routines are mu
h simpler than banded. Here we have a triangular, symmetri
 or Hermitianmatrix whi
h is pa
ked so that only the relevant triangle is stored. Thus if we have an upper tri-angular matrix stored in 
olumn-major pa
ked storage, the �rst element holds the relevant portionof the �rst 
olumn of the matrix, the next two elements hold the relevant portion of the se
ond
olumn, et
.With an upper triangular matrix stored in row-major pa
ked storage, the �rst N elements holdthe �rst row of the matrix, the next N � 1 elements hold the next row, et
.Thus we see in the Hermitian and symmetri
 
ases, to get a row-major pa
ked array 
orre
tlyinterpreted by Fortran 77, we will simply swit
h the setting of UPLO. This will mean that the rowsof the matrix will be read in as the 
olumns, but this is not a problem, as we have seen before.In the symmetri
 
ase, sin
e A = AT the 
olumn and rows are the same, so there is obviously noproblem. In the Hermitian 
ase, we must be sure that the imaginary 
omponent of the diagonal isnot used, and it assumed to be zero. However, the diagonal element in a row when our matrix isupper will 
orrespond to the diagonal element in a 
olumn when our matrix is 
alled lower, so thisis handled as well.In the triangular 
ases, we will need to 
hange both UPLO and TRANS, just as in the denseroutines.With these ideas in mind, the analysis for the dense routines may be used un
hanged for pa
ked.
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